Ali M. Zanaty, Ahmed M. Erfan, Wessam H. Mady, Fatma Amer, Ahmed A. Nour, Neveen Rabie, Mohamed Samy, Abdullah A. Selim, Wafaa M. M. Hassan, Mahmoud M. Naguib. 2019: Avian influenza virus surveillance in migratory birds in Egypt revealed a novel reassortant H6N2 subtype. Avian Research, 10(1): 41. DOI: 10.1186/s40657-019-0180-7
Citation: Ali M. Zanaty, Ahmed M. Erfan, Wessam H. Mady, Fatma Amer, Ahmed A. Nour, Neveen Rabie, Mohamed Samy, Abdullah A. Selim, Wafaa M. M. Hassan, Mahmoud M. Naguib. 2019: Avian influenza virus surveillance in migratory birds in Egypt revealed a novel reassortant H6N2 subtype. Avian Research, 10(1): 41. DOI: 10.1186/s40657-019-0180-7

Avian influenza virus surveillance in migratory birds in Egypt revealed a novel reassortant H6N2 subtype

More Information
  • Corresponding author:

    Mahmoud M. Naguib, Mahmoud.naguib@imbim.uu.se

  • Received Date: 11 Jun 2019
  • Accepted Date: 23 Oct 2019
  • Available Online: 24 Apr 2022
  • Publish Date: 30 Oct 2019
  • Background 

    Avian influenza viruses (AIVs) have been identified from more than 100 different species of wild birds around the globe. Wild migratory birds can act as potential spreaders for AIVs to domestic birds between different countries. Egypt is situated on important migratory flyways for wild birds between different continents. While much is known about circulation of zoonotic potential H5N1 and H9N2 AIVs in domestic poultry in Egypt, little is known about the pivotal role of migratory birds in the maintenance and transmission of the viruses in Egypt.

    Methods 

    Targeted AIV surveillance has been conducted in 2017 in different wetlands areas in Northern and Eastern Egypt.

    Results 

    AIV of subtype H5 was detected in two bird species. In addition, a novel reassortant strain of the H6N2 subtype was identified which reveals the continuous risk of new influenza virus(es) introduction into Egypt. This novel virus possesses a reassortant pattern originating from different AIV gene pools.

    Conclusions 

    Intervention control strategies should be performed to minimize the possible contact of domestic birds with wild birds to lower the risk of virus transmission at this interface. In addition, constant monitoring of AIVs in migratory birds is essential in the early detection of influenza virus introduction into Egypt.

  • Among the four species of ground jays (Podoces) in the world, two are found in the west of China (Qian et al., 1965; Cheng, 1987): the Xinjiang Ground Jay (P. biddulphi) (Fig. 1) and the Mongolian Ground Jay (P. hendersoni). Xinjiang Ground Jays occur only in the Taklimakan Desert, the southern part of Xinjiang. Since the species was established by A. Hume in 1874, little has been known of its status and ecology. The current essay describes such information based on a long-term field survey.

    Figure  1.  The Xinjiang Ground Jay in the Lopnur Desert (Photo by Ming Ma)

    The ground jays are residents at the center of the Taklimakan Desert (37–42°N, 77–94°E, 790–1500 m elevations; Fig. 2). Most of distribution range of the species falls within Xinjiang, with a few extending to the east, e.g. the Qaidam Basin in Qinghai Province and Dunhuang in Gansu Province (Collar et al., 2001; Sun and Li, 2009). Interestingly, Mongolian Ground Jays are distributed around the range of Xinjiang Ground Jays (Fig. 2). Such a pattern should be a result of inter-species competition. There is evidence showing that the ground jays are expanding their range from west to east during recent decades (Ma, 2010).

    Figure  2.  Distribution of the Xinjiang Ground Jay and the Mongolian Ground Jay in the Taklimakan Desert

    Ground jays are well adapted to desert and semi-desert regions (Ludlow and Kinnear, 1933). Compared with crows or choughs, ground jays are sandy in plumage, presumably providing protection from desert predators (Londei, 2004). As their names indicate, ground jays spend much of their time on the ground. The strong legs should be adaptive to the habit. However, ground jays nest in shrubs and trees, a characteristic similar to that followed by the Corvids species.

    Information on breeding ecology of Xinjiang Ground Jays is very limited. A total of 20 ground jay nests were recorded in Niya and Qarqan from 2003 to 2004. The birds placed their nests on the small desert-poplar tree Populus diversifolia and Tamarix spp. bushes, averaging 1.09 ± 0.15 m (range = 0–2.30 m, n = 18) above the ground (Fig. 3). The nests were composed of sheep wool, camel's wool, horse's hair, dead leaves, dry grass, and the soft cottony growth of reeds, with poplar skin, twigs and small sticks being lined at the base. The external diameter of the nest is 35.75 ± 2.30 cm (range = 16–55 cm, n = 16), the internal diameter of the nest is 12.82 ± 0.85 cm (range = 9–20 cm, n = 14), and depth of the nest is 9.50 ± 1.00 cm (range = 5–16 cm, n = 13) and the height is 20.88 ± 1.33 cm (range = 12–35 cm, n = 16) (Fig. 4a). Clutch size varied between 1 and 3 eggs (1.89 ± 0.31 eggs, n = 9), the diameters of the eggs are 32.88 ± 0.83 mm × 23.48 ± 0.09 mm, and the weight of egg is 8.33 ± 0.88 g (n = 4). The color of egg is pale green and grayish white with brown spots scattered all over the surface, rather more densely at the broad end (Fig. 4b). The parents fed the young (Fig. 4c) more than 42 times during one day for one nest located in the middle March (Ma, 2004). After fledging, family flocks of 4 to 6 birds were encountered between early May and July. These data suggested that the ground jays laid eggs from late February to April.

    Figure  3.  Nest height above the ground in relation to nesting bush height of the Xinjiang Ground Jays
    Figure  4.  Breeding ecoloty of the Xinjiang Ground Jay. (a) The local guide in the field work, showing the nest built on a Tamarix bush; (b) The egg; (c) Feeding the chicks; (d) Nearly fledging chicks (photos by Ming Ma).

    Based on the transect counting conducted from 1988 to 2011, the density of ground jays was to be 3–5 pairs per 100 km2. It was estimated to have 4100–6700 pairs of ground jays over the species' range of 135000 km2.

    The ground jay populations seemed to drop during recent decades (Grimmett, 1991; Madge and Burn, 1994; Ma, 1998). However, with the intensified desertification in western China, the jays have a tendency to expand to the east.For example, there were some of new records in Gansu and Qinghai provinces (Collar et al., 2001; Sun and Li, 2009; Ma, 2010). Arguably, this bird is an indicator species of desertification and climate change.

    Human activities such as oil industry, ecotourism, land exploitation and overgrazing should be responsible for the population decline (Ma, 2001; Ma and Kwok, 2004). The restricted range and special requirements for nesting habitats suggest an urgent conservation need for this species. Now, although the bird is classified as "near-threatened" (Collar et al., 2001), no protection measures have been in practice (Zheng and Wang, 1998).

    The research is supported by the Science Supporting Project of National Ministry of Science and Technology (2008BAC39B04) and the National Natural Science Foundation of China (30270211, 30470262, 30970340). Sincere thanks are due to all participants in the field work, especially to Jinghe Gu, Kwok Hon Kai, Zexin Jia, Batuerhan, Eugene Potapov, Chuanbo Wang, Feng Xu, Yiqun Wu, Mike Kilburn, Geoff Carey, Richard Lewthwaite, Sebastien Lepetz and Paul Leader. Gratitudes are also given to Prof. Xin Lu from Wuhan University who helps revise the earlier manuscript very carefully.

  • Abdelwhab EM, Hassan MK, Abdel-Moneim AS, Naguib MM, Mostafa A, Hussein ITM, et al. Introduction and enzootic of A/H5N1 in Egypt: virus evolution, pathogenicity and vaccine efficacy ten years on. Infect Genet Evol. 2016;40:80-90.
    Al-Ghadeer H, Chu DKW, Rihan EMA, Abd-Allah EA, Gu H, Chin AWH, et al. Circulation of influenza A(H5N8) virus, Saudi Arabia. Emerg Infect Dis. 2018;24:1961-4.
    Ben Shabat M, Meir R, Haddas R, Lapin E, Shkoda I, Raibstein I, et al. Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses. J Virol Methods. 2010;168:72-7.
    BirdLife International. Migratory soaring birds project. 2018. . Accessed 15 May 2019.
    Chatziprodromidou IP, Arvanitidou M, Guitian J, Apostolou T, Vantarakis G, Vantarakis A. Global avian influenza outbreaks 2010-2016: a systematic review of their distribution, avian species and virus subtype. Syst Rev. 2018;7:17.
    Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet. 2014;383:714-21.
    Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 2007;3:1414-21.
    Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772.
    Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969-73.
    Fan S, Deng G, Song J, Tian G, Suo Y, Jiang Y, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology. 2009;384:28-32.
    Fereidouni SR, Starick E, Grund C, Globig A, Mettenleiter TC, Beer M, et al. Rapid molecular subtyping by reverse transcription polymerase chain reaction of the neuraminidase gene of avian influenza A viruses. Vet Microbiol. 2009;135:253-60.
    Freidl GS, Meijer A, de Bruin E, de Nardi M, Munoz O, Capua I, et al. Influenza at the animal-human interface: a review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A (H5N1). Eurosurveillance. 2014;19:8-26.
    Fusaro A, Monne I, Salviato A, Valastro V, Schivo A, Amarin NM, et al. Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. J Virol. 2011;85:8413-21.
    Gerloff NA, Khan SU, Zanders N, Balish A, Haider N, Islam A, et al. Genetically diverse low pathogenicity avian influenza A virus subtypes co-circulate among poultry in Bangladesh. PLoS ONE. 2016;11:e0152131.
    Gleed ML, Ioannidis H, Kolocouris A, Busath DD. Resistance-mutation (N31) effects on drug orientation and channel hydration in amantadine-bound influenza A M2. J Phys Chem B. 2015;119:11548-59.
    Hagag NM, Erfan AM, El-Husseiny M, Shalaby AG, Saif MA, Tawakol MM, et al. Isolation of a novel reassortant highly pathogenic avian influenza (H5N2) virus in Egypt. Viruses. 2019;11:565.
    Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146:2275-89.
    Ibrahim WAL. An overview of bird migration studies in Egypt. Ring. 2011;33:55-75.
    Kamal RP, Katz JM, York IA. Molecular determinants of influenza virus pathogenesis in mice. Curr Top Microbiol. 2014;385:243-74.
    Kandeil A, Kayed A, Moatasim Y, Webby RJ, McKenzie PP, Kayali G, et al. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt. J Gen Virol. 2017;98:1573-86.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772-80.
    Kayed AS, Kandeil A, Gomaa MR, El-Shesheny R, Mahmoud S, Hegazi N, et al. Surveillance for avian influenza viruses in wild birds at live bird markets, Egypt, 2014-2016. Influenza Other Resp. 2019;13:407-14.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647-9.
    Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al. Influenza. Nat Rev Dis Primers. 2018;4:3.
    Kuiken T. Is low pathogenic avian influenza virus virulent for wild waterbirds? Proc Biol Sci. 2013;280:20130990.
    Latorre-Margalef N, Tolf C, Grosbois V, Avril A, Bengtsson D, Wille M, et al. Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe. Proc Biol Sci. 2014;281:20140098.
    Lednicky JA, Loeb JC. Detection and isolation of airborne influenza A H3N2 virus using a sioutas personal cascade impactor sampler. Influenza Res Treat. 2013;2013:656825.
    Lee MS, Chang PC, Shien JH, Cheng MC, Shieh HK. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J Virol Methods. 2001;97:13-22.
    Li J, Quan C, Xie Y, Ke C, Nie Y, Chen Q, et al. Continued reassortment of avian H6 influenza viruses from Southern China, 2014-2016. Transbound Emerg Dis. 2019;66:592-8.
    Lu L, Lycett SJ, Leigh Brown AJ. Reassortment patterns of avian influenza virus internal segments among different subtypes. BMC Evol Biol. 2014;14:16.
    Monne I, Hussein HA, Fusaro A, Valastro V, Hamoud MM, Khalefa RA, et al. H9N2 influenza A virus circulates in H5N1 endemically infected poultry population in Egypt. Influenza Other Resp. 2013;7:240-3.
    Munster VJ, Baas C, Lexmond P, Waldenstrom J, Wallensten A, Fransson T, et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog. 2007;3:e61.
    Naguib MM, Arafa AS, El-Kady MF, Selim AA, Gunalan V, Maurer-Stroh S, et al. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt. Infect Genet Evol. 2015;34:278-91.
    Naguib MM, Arafa AS, Parvin R, Beer M, Vahlenkamp T, Harder TC. Insights into genetic diversity and biological propensities of potentially zoonotic avian influenza H9N2 viruses circulating in Egypt. Virology. 2017;511:165-74.
    Naguib MM, Harder T. Endemic situation of multiple avian influenza strains in poultry in Egypt:a continuing nightmare. Zoonoses Public Hlth. 2018;65:908-10.
    Naguib MM, Verhagen JH, Samy A, Eriksson P, Fife M, Lundkvist Å, et al. Avian influenza viruses at the wild-domestic bird interface in Egypt. Infect Ecol Epidemiol. 2019;9:1575687.
    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268-74.
    OIE. Avian influenza (Infection with avian influenza viruses). OIE (World Organisation for Animal Health) terrestrial manual 2018. Chapter 3.4.4. 2018. . Accessed 15 May 2019.
    Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA. Global patterns of influenza a virus in wild birds. Science. 2006;312:384-8.
    Pantin-Jackwood MJ, Swayne DE. Pathogenesis and pathobiology of avian influenza virus infection in birds. Rev Sci Tech. 2009;28:113-36.
    Peng J, Yang H, Jiang H, Lin YX, Lu CD, Xu YW, et al. The origin of novel avian influenza A (H7N9) and mutation dynamics for its human-to-human transmissible capacity. PLoS ONE. 2014;9:e93094.
    Samson M, Pizzorno A, Abed Y, Boivin G. Influenza virus resistance to neuraminidase inhibitors. Antivir Res. 2013;98:174-85.
    Selim AA, Erfan AM, Hagag N, Zanaty A, Samir AH, Samy M, et al. Highly pathogenic avian influenza virus (H5N8) clade 2.3.4.4 infection in migratory birds. Egypt. Emerg Infect Dis. 2017;23:1048-51.
    Slomka MJ, Pavlidis T, Banks J, Shell W, McNally A, Essen S, et al. Validated H5 Eurasian real-time reverse transcriptase-polymerase chain reaction and its application in H5N1 outbreaks in 2005-2006. Avian Dis. 2007;51:373-7.
    Slomka MJ, Pavlidis T, Coward VJ, Voermans J, Koch G, Hanna A, et al. Validated RealTime reverse transcriptase PCR methods for the diagnosis and pathotyping of Eurasian H7 avian influenza viruses. Influenza Other Resp. 2009;3:151-64.
    Steel J, Lowen AC. Influenza A virus reassortment. Curr Top Microbiol. 2014;385:377-401.
    Stubbs TM, Te Velthuis AJ. The RNA-dependent RNA polymerase of the influenza A virus. Future Virol. 2014;9:863-76.
    Sun Y, Liu J. H9N2 influenza virus in China: a cause of concern. Protein Cell. 2015;6:18-25.
    Thuy DM, Peacock TP, Bich VTN, Fabrizio T, Hoang DN, Tho ND, et al. Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014. Infect Genet Evol. 2016;44:530-40.
    To KK, Ng KH, Que TL, Chan JM, Tsang KY, Tsang AK, et al. Avian influenza A H5N1 virus: a continuous threat to humans. Emerg Microbes Infect. 2012;1:e25.
    Verhagen JH, Lexmond P, Vuong O, Schutten M, Guldemeester J, Osterhaus AD, et al. Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; towards improvement of surveillance programs. PLoS ONE. 2017;12:e0173470.
    Wei SH, Yang JR, Wu HS, Chang MC, Lin JS, Lin CY, et al. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir Med. 2013;1:771-8.
    Yehia N, Naguib MM, Li R, Hagag N, El-Husseiny M, Mosaad Z, et al. Multiple introductions of reassorted highly pathogenic avian influenza viruses (H5N8) clade 2.3.4.4b causing outbreaks in wild birds and poultry in Egypt. Infect Genet Evol. 2018;58:56-65.
  • Related Articles

Catalog

    Figures(4)  /  Tables(1)

    Article Metrics

    Article views (208) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return