Andy Bunn, M.K., 2017. A language and environment for statistical computing. R Found. Stat. Comput. 10, 11-18. |
Ausprey, I.J., Newell, F.L., Robinson, S.K., 2020. Adaptations to light predict the foraging niche and disassembly of avian communities in tropical countrysides. Ecology 102, e03213. |
Barçante, L., M. Vale, M., Maria, M.A., 2017. Altitudinal migration by birds: a review of the literature and a comprehensive list of species. J. F. Ornithol. 88, 12234. DOI: 10.1111/jofo.12234. |
Barton, K., 2013. MuMIn: Multi-Model Inference. R Package, version 1.10.0. |
Bergmann, C., 1847. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 1, 595–708. |
Berthold, P., 2002. Bird migration: A general survey. Auk 119, 874-875. |
Blackburn, T.M., Ruggiero, A., 2001. Latitude, elevation and body mass variation in Andean passerine birds. Glob. Ecol. Biogeogr. 10, 245-259. doi: 10.1046/j.1466-822X.2001.00237.x |
Bonte, D., Van Dyck, H., Bullock, J.M., Coulon, A., Delgado, M., Gibbs, M., 2012. Costs of dispersal. Biol. Rev. 87, 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x. |
Boyle, W.A., 2008a. Partial migration in birds: Tests of three hypotheses in a tropical lekking frugivore. J. Anim. Ecol. 77, 1122-1128. doi: 10.1111/j.1365-2656.2008.01451.x |
Boyle, W.A., 2008b. Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia 155, 397-403. doi: 10.1007/s00442-007-0897-6 |
Boyle, W.A., 2011. Short-distance partial migration of Neotropical birds: A community-level test of the foraging limitation hypothesis. Oikos 120, 1803-1816. doi: 10.1111/j.1600-0706.2011.19432.x |
Boyle, W.A., 2017. Altitudinal bird migration in North America. Auk, 134, 443-465. doi: 10.1642/AUK-16-228.1 |
Boyle, W.A., Norris, D.R., Guglielmo, C.G., 2010. Storms drive altitudinal migration in a tropical bird. Proc. Biol. Sci. 277, 2511-2519. doi: 10.1098/rspb.2010.0344 |
Chen, I.C., Hill, J.K., Shiu, H.J., Holloway, J.D., Benedick, S., Chey, V.K., et al., 2011. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34-45. doi: 10.1111/j.1466-8238.2010.00594.x |
Claramunt, S., 2021. Flight efficiency explains differences in natal dispersal distances in birds. Ecology 102, e03442. |
Freeman, B.G., 2017. Little evidence for Bergmann's rule body size clines in passerines along tropical elevational gradients. J. Biogeogr. 44, 502-510. doi: 10.1111/jbi.12812 |
Freeman, B.G., Tobias, J.A., Schluter, D., 2019. Behavior influences range limits and patterns of coexistence across an elevational gradient in tropical birds. Ecography 42, 1832-1840. doi: 10.1111/ecog.04606 |
Ghosh-Harihar, M., Price, T.D., 2014. A test for community saturation along the Himalayan bird diversity gradient, based on within-species geographical variation. J. Anim. Ecol. 83, 628-638. doi: 10.1111/1365-2656.12157 |
Guilherme, J.L., Burnside, R.J., Collar, N.J., Dolman, P.M., 2018. Consistent nest-site selection across habitats increases fitness in Asian Houbara. Auk 135, 192-205. doi: 10.1642/auk-17-156.1 |
He, X., DuBay, S., Zhangshang, M., Cheng, Y., Liu, Z., Li, D., et al., 2022. Seasonal elevational patterns and the underlying mechanisms of avian diversity and community structure on the eastern slope of Mt. Gongga. Divers. Distrib. https://doi.org/10.1111/ddi.13475. |
He, X., Wang, X., DuBay, S., Reeve, A.H., Alström, P., Ran, J., et al., 2019. Elevational patterns of bird species richness on the eastern slope of Mt. Gongga, Sichuan Province, China. Avian Res. 10, 1. doi: 10.1186/s40657-018-0140-7 |
Hsiung, A.C., Boyle, W.A., Cooper, R.J., Chandler, R.B., 2018. Altitudinal migration: ecological drivers, knowledge gaps, and conservation implications. Biol. Rev. 93, 2049-2070. doi: 10.1111/brv.12435 |
Jankowski, J.E., Robinson, S.K., Levey, D.J., 2010. Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds. Ecology, 91, 1877-1884. doi: 10.1890/09-2063.1 |
Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O., 2012. The global diversity of birds in space and time. Nature 491, 444-448. doi: 10.1038/nature11631 |
Kimura, M.T., 2021. Altitudinal migration of insects. Entomol. Sci. 24, 35-47. doi: 10.1111/ens.12444 |
Körner, C., 2007. The use of "altitude" in ecological research. Trends Ecol. Evol. 22, 569-574. doi: 10.1016/j.tree.2007.09.006 |
Lees, A.C., Peres, C.A., 2009. Gap-crossing movements predict species occupancy in Amazonian forest fragments. Oikos 118, 280-290. doi: 10.1111/j.1600-0706.2008.16842.x |
Lester, S.E., Ruttenberg, B.I., Gaines, S.D., Kinlan, B.P., 2007. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745-758. doi: 10.1111/j.1461-0248.2007.01070.x |
Levey, D.J., 1988. Spatial and temporal variation in Costa Rican fruit and fruit-eating bird abundance. Ecol. Monogr. 58, 251-269. doi: 10.2307/1942539 |
Li, W., Yang, G., Chen, H., Tian, J., Zhang, Y., Zhu, Q., et al., 2013. Soil available nitrogen, dissolved organic carbon and microbial biomass content along altitudinal gradient of the eastern slope of Gongga Mountain. Acta Ecol. Sin. 33, 266-271. doi: 10.1016/j.chnaes.2013.07.006 |
Li, Z., He, Y., Yang, X., Theakstone, W.H., Jia, W., et al., 2010. Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change during the Holocene. Quat. Int. 218, 166-175. doi: 10.1016/j.quaint.2008.09.005 |
Liang, D., Pan, X., Luo, X., Wenda, C., Zhao, Y., Hu, Y., et al., 2021. Seasonal variation in community composition and distributional ranges of birds along a subtropical elevation gradient in China. Divers. Distrib. 27, 2527-2541. doi: 10.1111/ddi.13420 |
Liao, J., Liao, T., He, X., Zhang, T., Li, D., Luo, X., et al., 2020. The effects of agricultural landscape composition and heterogeneity on bird diversity and community structure in the Chengdu Plain, China. Glob. Ecol. Conserv. 24, e01191. doi: 10.1016/j.gecco.2020.e01191 |
Liu, Q., Liu, S., Zhang, Y., Wang, X., Zhang, Y., Guo, W., et al., 2010. Recent shrinkage and hydrological response of Hailuogou glacier, a monsoon temperate glacier on the east slope of Mount Gongga, China. J. Glaciol. 56, 215-224. doi: 10.3189/002214310791968520 |
Loiselle, B.A., Blake, J.G., 1991. Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72, 180-193. doi: 10.2307/1938913 |
MacLean, S.A., Beissinger, S.R., 2017. Species' traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Glob. Chang. Biol. 23, 4094-4105. doi: 10.1111/gcb.13736 |
Martin, T.E., Boyce, A.J., Fierro-Calderon, K., Mitchell, A.E., Armstad, C.E., Mouton, J.C., et al., 2017. Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Funct. Ecol. 31, 1231-1240. doi: 10.1111/1365-2435.12819 |
McCain, C.M., Grytnes, J., 2010. Elevational Gradients in Species Richness. https://doi.org/10.1002/9780470015902.a0022548 eLS. |
Menéndez, R., González-Megías, A., Jay-Robert, P., Marquéz-Ferrando, R., 2014. Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges. Glob. Ecol. Biogeogr. 23, 646-657. doi: 10.1111/geb.12142 |
Natusch, D.J.D., Lyons, J.A., Shine, R., 2017. Safety first: terrestrial predators drive selection of highly specific nesting sites in colonial-breeding birds. J. Avian Biol. 48, 1104-1113. doi: 10.1111/jav.01380 |
Neate-Clegg, M.H.C., Jones, S.E.I., Tobias, J.A., Newmark, W.D., Şekercioǧlu, Ç. H., 2021. Ecological correlates of elevational range shifts in tropical birds. Front. Ecol. Evol. 9, 621749. doi: 10.3389/fevo.2021.621749 |
Nevada, S., Hahn, T.P., Sockman, K.W., Breuner, C.W., Morton, M.L., 2004. Facultative altitudinal movements by mountain White-Crowned Sparrows (Zonotrichia leucophrys oriantha) in the Sierra Nevada. Auk 121, 1269-1281. doi: 10.1642/0004-8038(2004)121[1269:FAMBMW]2.0.CO;2 |
Paradis, E., Baillie, S.R., Sutherland, W.J., Gregory, R.D., 1998. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518-536. doi: 10.1046/j.1365-2656.1998.00215.x |
Pennycuick, C.J., 2008. Modelling the Flying Bird. Academic Press, New York. |
Pinheiro, 2012. The Nlme Package: Linear and Nonlinear Mixed Effects Models. https://svn.r-project.org/R-packages/trunk/nlme/. |
Proctor, V.W., 1968. Long-distance dispersal of seeds by retention in digestive tract of birds. Science 160, 321-322. doi: 10.1126/science.160.3825.321 |
Rappole, J.H., 2016. The Avian Migrant: the Biology of Bird Migration. Columbia University Press, New York. |
Revell, L.J., 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223. doi: 10.1111/j.2041-210X.2011.00169.x |
Robinson, W.D., Robinson, T.R., 2001. Observations of predation events at bird nests in central Panama. J. F. Ornithol. 72, 43-48. doi: 10.1648/0273-8570-72.1.43 |
Sheard, C., Neate-Clegg, M.H.C., Alioravainen, N., Jones, S.E.I., Vincent, C., MacGregor, H.E.A., et al., 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463. doi: 10.1038/s41467-020-16313-6 |
Si, X., Cadotte, M.W., Zeng, D., Baselga, A., Zhao, Y., Li, J., et al., 2017. Functional and phylogenetic structure of island bird communities. J. Anim. Ecol. 86, 532-542. doi: 10.1111/1365-2656.12650 |
Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A., 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 1-5. |
Tobias, J.A., Sheard, C., Seddon, N., Meade, A., Cotton, A.J., Nakagawa, S., 2016. Territoriality, social bonds, and the evolution of communal signaling in birds. Front. Ecol. Evol. 4, 00074. |
Travis, J.M.J., Delgado, M., Bocedi, G., Baguette, M., Bartoń, K., Bonte, D., et al., 2013. Dispersal and species' responses to climate change. Oikos 122, 1532-1540. doi: 10.1111/j.1600-0706.2013.00399.x |
Tsai, P.Y., Ko, C.J., Chia, S.Y., Lu, Y.J., Tuanmu, M.N., 2021. New insights into the patterns and drivers of avian altitudinal migration from a growing crowdsourcing data source. Ecography 44, 75-86. doi: 10.1111/ecog.05196 |
Videler, J.J., 2006. Avian Flight. Oxford University Press, USA. |
Wang, Y., Song, Y., Zhong, Y., Chen, C., Zhao, Y., Zeng, D., et al., 2021. A dataset on the life-history and ecological traits of Chinese birds. Biodivers. Sci. 29, 1149-1153. doi: 10.17520/biods.2021201 |
Wu, Y., Colwell, R.K., Han, N., Zhang, R., Wang, W., Quan, Q., et al., 2014. Understanding historical and current patterns of species richness of babblers along a 5000-m subtropical elevational gradient. Glob. Ecol. Biogeogr. 23, 1167-1176. doi: 10.1111/geb.12197 |
Wu, Y., Colwell, R.K., Rahbek, C., Zhang, C., Quan, Q., Wang, C., et al., 2013. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 40, 2310-2323. doi: 10.1111/jbi.12177 |
Wu, Y., DuBay, S.G., Colwell, R.K., Ran, J., Lei, F., 2017. Mobile hotspots and refugia of avian diversity in the mountains of south-west China under past and contemporary global climate change. J. Biogeogr. 44, 615-626. doi: 10.1111/jbi.12862 |
Zhang, T., Chen, X., Wu, Y., Ran, J., 2020. Diversity and structure of bird communities in contrasting forests of the Hengduan Mountains, China. Biodivers. Conserv. 29, 3739-3755. doi: 10.1007/s10531-020-02047-w |