Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
John A. Allcock, Timothy C. Bonebrake, Yik Hei Sung, Caroline Dingle. 2022: Shifts in phenology of autumn migration and wing length among reedbed passerines along the East Asian–Australasian Flyway. Avian Research, 13(1): 100052. doi: 10.1016/j.avrs.2022.100052
Citation: John A. Allcock, Timothy C. Bonebrake, Yik Hei Sung, Caroline Dingle. 2022: Shifts in phenology of autumn migration and wing length among reedbed passerines along the East Asian–Australasian Flyway. Avian Research, 13(1): 100052. doi: 10.1016/j.avrs.2022.100052

Shifts in phenology of autumn migration and wing length among reedbed passerines along the East Asian–Australasian Flyway

doi: 10.1016/j.avrs.2022.100052
More Information
  • Corresponding author: E-mail address: cdingle@hku.hk (C. Dingle)
  • Received Date: 18 Feb 2022
  • Accepted Date: 21 Jul 2022
  • Rev Recd Date: 14 Jul 2022
  • Available Online: 11 Oct 2022
  • Publish Date: 05 Aug 2022
  • Climate change impacts bird migration phenology, causing changes in departure and arrival dates, leading to potential mismatches between migration and other key seasonal constraints. While the impacts of climate change on arrival at breeding grounds have been relatively well documented, little is known about the impacts of climate change on post-breeding migration, especially at stopover sites. Here we use long-term (11 years) banding data (11,118 captures) from 7 species at Mai Po Marshes Nature Reserve in Hong Kong, a key stopover site for migratory birds along the East Asian–Australasian Flyway, to describe long-term changes in migration phenology and to compare observed changes to annual weather variation. We also examine changes in wing length over a longer time period (1985–2020) as wing length often correlates positively with migration distance. We found that observed changes in migratory phenology vary by species; three species had later estimated arrival (by 1.8 days per year), peak (by 2.6 days per year) or departure (by 2.5 days per year), one showed an earlier peak date (by 1.8 days per year) and two showed longer duration of passage (2.7 days longer and 3.2 days longer per year). Three species exhibited no long-term change in migration phenology. For two of the four species with shifting phenology, temperature was an important predictor of changing peak date, departure dates and duration of passage. Wing length was shorter in three species and longer in two species, but these changes did not correlate with observed phenological changes. The complex changes observed here are indicative of the challenges concerning the detection of climate change in migratory stopover sites. Continued monitoring and a better understanding of the dynamics of all sites in the migratory pathway will aid conservation of these species under global change.

     

  • loading
  • Alerstam, T., 2011. Optimal bird migration revisited. J. Ornithol. 152, 5-23. https://doi.org/10.1007/s10336-011-0694-1.
    Allcock, J.A., Leader, P.J., Stanton, D.J., Leven, M.R., Leung, K.K.S., 2018. Permanently inundated Phragmites reedbed supports higher abundance of wetland-dependent bird species that drier reedbed during southward migration through Hong Kong. Forktail 34, 9-13.
    Allcock, J.A., Chow, G.K.L., Dingle, C., Leader, P.J., Leung, K.K.S., Ma, C.K.W., et al., 2021. Bird ringing in Hong Kong during 2018. In: Allcock, J.A., Chow, G. (Eds. ), Hong Kong Bird Report 2018. Hong Kong Bird Watching Society, Hong Kong, pp. 225-244.
    Ambrosis, R., Cuervo, J.J., du Feu, C., Fiedler, W., Musitelli, F., Rubolini, D., et al., 2016. Migratory connectivity and effects of winter temperatures on migratory behaviour of the European robin Erithacus rubecula. J. Anim. Ecol. 85, 749-760. https://www.jstor.org/stable/44081564.
    Ambrosini, R., Rubolini, D., Moeller, A.P., Bani, L., Clark, J., Karcza, Z., et al., 2011. Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Climate Res. 49, 131-141. https://doi.org/10.3354/CR01025.
    Barton, G.G., Sandercock, B.K., 2017. Long-term changes in the seasonal timing of landbird migration on the Pacific Flyway. Condor 120, 30-46. https://doi.org/10.1650/CONDOR-17-88.1.
    Bearhop, S., Fiedler, W., Furness, R.W., Votier, S.C., Waldron, S., Newton, J., et al., 2005. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502-504. https://doi.org/10.1126/science.1115661.
    Bergmann, K., 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3, 595-708.
    Bitterlin, L.R., van Buskirk, J., 2014. Ecological and life history correlates of changes in avian migration timing in response to climate change. Climate Res. 61, 109-121. https://doi.org/10.3354/CR01238.
    BirdLife International, 2021. IUCN Red List for birds. http://www.birdlife.org (Accessed 24 February 2021).
    Bozo, L., Heim, W., 2016. Sex-specific migration of Phylloscopus warblers at a stopover site in Far Eastern Russia. Ringing Migration 31, 41-46. doi: 10.1080/03078698.2016.1195213
    Bozó, L., Csörgő, T., Heim, W., 2020. Stopover duration and body mass change of two Siberian songbird species at a refuelling site in the Russian Far East. Ornithol. Sci. 19, 159 - 166. https://doi.org/10.2326/osj.19.159.
    Bozó, L., Csörgő, T., Heim, W., 2021. Factors controlling the migration phenology of Siberian Phylloscopus species. J. Ornithol. 162, 53-59. https://doi.org/10.1007/s10336-020-01805-5.
    Bozó, L., Csorgő, T., Heim, W., 2018. Weather conditions affect spring and autumn migration of Siberian leaf warblers. Avian Res. 9, 33. https://doi.org/10.1186/s40657-018-0126-5.
    Brisson-Curadeau É., Elliott, K.H., Côté, P., 2020. Factors influencing fall departure phenology in migratory birds that bred in northeastern North America. Auk 137, ukz064. https://doi.org/10.1093/auk/ukz064.
    Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd ed. Springer-Verlag, New York.
    Carey, G.J., Chalmers, M.L., Diskin, D.A., Kennerley, P.R., Leader, P.J., Lewthwaite, R.W., et al., 2001. The Avifauna of Hong Kong. Hong Kong Bird Watching Society, Hong Kong.
    Chmura, H.E., Krause, J.S., Pérez, J.H., Ramenofsky, M., Wingfield, J.C., 2020. Autumn migratory departure is influenced by reproductive timing and weather in an Arctic passerine. J. Ornithol. 161, 779-791. https://doi.org/10.1007/s10336-020-01754-z.
    Cooper, N.W., Murphy, M.T., Redmond, L.J., Dolan, A.C., 2011. Reproductive correlates of spring arrival date in the Eastern Kingbird Tyrannus tyrannus. J. Ornithol. 152, 143-152. https://doi.org/10.1007/s10336-010-0559-z.
    Covino, K.M., Horton, K.G., Morris, S.R., 2020. Seasonally specific changes in migration phenology across 50 years in the Black-throated Blue Warbler. Auk 137, ukz080. https://doi.org/10.1093/auk/ukz080.
    Curley, S.R., Manne, L.L., Veit, R.R., 2020. Differential winter and breeding range shifts: implications for avian migration distances. Divers. Distrib. 26, 415-425. doi: 10.1111/ddi.13036
    Dorian, N.N., Lloyd-Evans, T.L., Reed, J.M., 2020. Non-parallel changes in songbird migration timing are not explained by changes in stopover duration. PeerJ 8, e8975. https://doi.org/10.7717/peerj.8975.
    Dorzhieva, A., Nakata, M., Takano, K., Ito, Y., Akahara, K., Tachikawa, K., et al., 2020. Bird-banding records reveal changes in avian spring and autumn migration timing in a coastal forest near Niigata. Ornithol. Sci. 19, 41-53. https://doi.org/10.2326/osj.19.41.
    Ellwood, E.R., Gallinat, A., Primack, R.B., Lloyd-Evans, T.L., 2015. Autumn migration of North American landbirds. In: Wood, E.M., Kellermann, J.L. (Eds. ), Phenological Synchrony and Bird Migration: Changing Climate and Seasonal Resources in North America, Studies in Avian Biology (no. 47). CRC Press, Boca Raton, pp. 193-205.
    Forchhammer, M.C., Post, E., Stenseth, N.C., 2002. North Atlantic Oscillation timing of long- and short-distance migration. J. Anim. Ecol. 71, 1002-1014. https://doi.org/10.1046/j.1365-2656.2002.00664.x.
    Gallinat, A.S., Primack, R.B., Wagner, D.L., 2015. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169-176. https://doi.org/10.1016/j.tree.2015.01.004.
    Gardner, J.L., Heinsohn, R., Joseph, L., 2009. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. B. 276, 3845-3852. https://doi.org/10.1098/rspb.2009.1011.
    Gosler, A.G., Greenwood, J.J.D., Baker, J.K., Davidson, N.C., 1998. The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study 45, 92-103. doi: 10.1080/00063659809461082
    Gwinner, E., 2003. Circannual rhythms in birds. Curr. Opin. Neurobiol. 13, 770-778. https://doi.org/10.1016/j.conb.2003.10.010.
    Haest, B., Hüppop, O., van de Pol, M., Bairlein, F., 2019. Autumn bird migration phenology: a potpourri of wind, precipitation and temperature effects. Global Change Biol. 25, 4064-4080. https://doi.org/10.1111/gcb.14746.
    Hahn, S., Korner-Nievergelt, F., Emmenegger, T., Amrhein, V., Csorg, T., Gursoy, A., et al., 2016. Longer wings for faster springs - wing length relates to spring phenology in a long-distance migrant across its range. Ecol. Evol. 6, 68-77. https://doi.org/10.1002/ece3.1862.
    Harris, J.B.C., Yong, D.L., Sodhi, N.S., Subaraj, R., Fordham, D.A., Brook, B.W., 2013. Changes in autumn arrival of long-distance migratory birds in Southeast Asia. Climate Res. 57, 133-141. https://doi.org/10.3354/CR01172.
    Hasselquist, D., Montràs-Janer, T., Tarka, M., Hansson, B., 2017. Individual consistency of long-distance migration in a songbird: significant repeatability of autumn route, stopovers and wintering sites but not in timing of migration, J. Avian Biol. 48, 91-102. https://doi.org/10.1111/jav.01292.
    Heim, W., Pedersen, L., Heim, R., Kamp, J., Smirenski, S.M., Thomas, A., et al., 2018. Full annual cycle tracking of a small songbird, the Siberian Rubythroat Calliope calliope, along the East Asian flyway. J. Ornithol. 159, 893-899. https://doi.org/10.1007/s10336-018-1562-z.
    Hitch, A.T., Leberg, P.L., 2007. Breeding distributions of North American bird species moving north as a result of climate change. Conserv. Biol. 21, 534-539. http://www.jstor.org/stable/4620836. doi: 10.1111/j.1523-1739.2006.00609.x
    Horton, K.G., La Sorte, F.A., Sheldon, D., Lin, T-Y., Winner, K., Bernstein, G., et al., 2020. Farnsworth, phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Chang. 10, 63-68. https://doi.org/10.1038/s41558-019-0648-9.
    Hubálek, Z., 2003. Spring migration of birds in relation to North Atlantic Oscillation. Folia Zool. 52, 287-298.
    Hurlbert, A.H., Liang, Z., 2012. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS One 7, e31662. https://doi.org/10.1371/journal.pone.0031662.
    Hüppop, O., Hüppop, K., 2003. North Atlantic Oscillation and timing of spring migration in birds. Proc. R. Soc. B. 270, 233-240. https://doi.org/10.1098/rspb.2002.2236.
    Imlay, T.L., Mann, H.A.R., Taylor, P.D., 2021. Autumn migratory timing and pace are driven by breeding season carryover effects. Anim. Behav. 177, 207-214. https://doi.org/10.1016/j.anbehav.2021.05.003.
    Jenni, L., Kery, M., 2003. Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc. R. Soc. B. 270, 1467-1471. https://doi.org/10.1098/rspb.2003.2394.
    Jirinec, V., Burner, R.C., Amaral, B.R., Bierregaard, R.O., Fernández-Arellano, G., Hernández-Palma, A., et al., 2021. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743. https://doi.org/10.1126/sciadv.abk1743.
    Knudsen, E., Linden, A., Ergon, T., Jonzen, N., Vik, J.O., Knape, J., et al., 2007. Characterizing bird migration phenology using data from standardized monitoring at bird observatories. Climate Res. 35, 59-77. https://doi.org/10.3354/cr00714.
    Koleček, J., Adamík, P., Reif, J., 2020. Shifts in migration phenology under climate change: temperature vs. abundance effects in birds. Climatic Change 159, 177-194. https://doi.org/10.1007/s10584-020-02668-8.
    La Sorte, F.A., Thompson, F.R., 2007. Poleward shifts in winter ranges of North American birds. Ecology 88, 1803-1812. https://doi.org/10.1890/06-1072.1.
    La Sorte, F.A., Fink, D., Hochachka, W.M., DeLong, J.P., Kelling, S., 2013. Population-level scaling of avian migration speed with body size and migration distance for powered fliers. Ecology 94, 1839-1847. https://doi.org/10.1890/12-1768.1.
    La Sorte, F.A., Hochachka, W.M., Farnsworth, A., Sheldon, D., Fink, D., Geevarghese, J., et al., 2015. Migration timing and its determinants for nocturnal migratory birds during autumn migration, J. Anim. Ecol. 84, 1202-1212. https://doi.org/10.1111/1365-2656.12376.
    Lehikoinen, E.S.A., Sparks, T.H., Zalakevicius, M., 2004. Arrival and departure dates. Adv. Ecol. Res. 35, 1-31. https://doi.org/10.1016/S0065-2504(04)35001-4.
    Linden, A., Meller, K., Knape, J., 2016. Empirical comparison of models for the phenology of bird migration, J. Avian Biol. 48, 255-265. https://doi.org/10.1111/jav.00994.
    Maclean, I.M.D., Austin, G.E., Rehfisch, M.M., Blew, J., Crowe, O., Delany, S., et al., 2008. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biol. 14, 2489-2500. https://doi.org/10.1111/j.1365-2486.2008.01666.x.
    Martín, B., Onrubia, A., Ferrer, M., 2016. Migration timing responses to climate change differ between adult and juvenile white storks across western Europe. Climate Res. 69, 9-23. https://doi.org/10.3354/cr01390.
    McDermott, M.E., DeGroote, L.W., 2017. Linking phenological events in migratory passerines with a changing climate: 50 years in the Laurel Highlands of Pennsylvania. PLoS One 12, e0174247. https://doi.org/10.1371/journal.pone.0174247.
    McKinnon, E.A., Macdonald, C.M., Gilchrist, H.G., Love, O.P., 2016. Spring and fall migration phenology of an Arctic-breeding passerine. J. Ornithol. 157, 681-693. https://doi.org/10.1007/s10336-016-1333-7.
    Miller-Rushing, A.J., Lloyd-Evans, T.L., Primack, R.B., Satzinger, P., 2008. Bird migration times, climate change, and changing population sizes. Global Change Biol. 14, 1959-1972. https://doi.org/10.1111/j.1365-2486.2008.01619.x.
    Møller, A.P., van Nus, T., Hobson, K.A., 2021. Rapid reduction in migration distance in relation to climate in a long-distance migratory bird. Curr. Zool. 68, 233-235.
    Newton, I., 2008. The Migration Ecology of Birds. Academic Press, London.
    Newton, I., 2011. Migration within the annual cycle: species, sex and age differences. J. Ornithol. 152, 169-185. https://doi.org/10.1007/s10336-011-0689-y.
    Nilsson, C., Klaassen, R.H.G., Alerstam, T., 2013. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181, 837-845. https://doi.org/10.1086/670335.
    Nowakowski, J.K., Szulc, J., Remisiewicz, M., 2014. The further the flight, the longer the wing: relationship between wing length and migratory distance in Old World reed and bush Warblers (Acrocephalidae and Locustellidae). Ornis Fennica 91, 178-186.
    Ozarowska, A., Zaniewicz, G., Meissner, W., 2018. Spring arrival timing varies between the groups of blackcaps (Sylvia atricapilla) differing in wing length. Ann. Zool. Fenn. 55, 45-54. https://doi.org/10.5735/086.055.0105.
    Paxton, K.L., Cohen, E.B., Paxton, E.H., Németh, Z, Moore, F.R., 2014. Niño–Southern oscillation is linked to decreased energetic condition in long-distance migrants. PLoS ONE 9, e95383. https://doi.org/10.1371/journal.pone.0095383.
    Potti, J., 1998. Arrival time from spring migration in male Pied Flycatchers: individual consistency and familial resemblance. Condor 100, 702-708. https://doi.org/10.2307/1369752.
    R Core Development Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.
    Remacha, C., Rodríguez, C., de la Puente, J., Pérez-Tris, J., 2020. Climate change and maladaptive wing shortening in a long-distance migratory bird. Auk 137, ukaa012. https://doi.org/10.1093/auk/ukaa012.
    Rotics, S., Turjeman, S., Kaatz, M., Resheff, Y.S., Zurell, D., Sapir, N., et al., 2017. Wintering in Europe instead of Africa enhances juvenile survival in a long-distance migrant. Anim. Behav. 126, 79-88. https://doi.org/10.1016/j.anbehav.2017.01.016.
    Salewski, V., Hochachka, W.M., Fiedler, W., 2010. Global warming and Bergmann's rule: do central European passerines adjust their body size to rising temperatures? Oecologia 162, 247-260. doi: 10.1007/s00442-009-1446-2
    Salewski, V., Siebenrock, K-H., Hochachka, W.M., Woog, F., Fiedler, W., 2014. Morphological change to birds over 120 years is not explained by thermal adaptation to climate change. PLoS ONE 9, e101927. https://doi.org/10.1371/journal.pone.0101927.
    Smallwood, J.A., 1988. A mechanism of sexual segregation by habitat in American kestrels (Falco sparverius) wintering in South-Central Florida. Auk 105, 36-46. https://doi.org/10.1093/auk/105.1.36.
    Stolt, B.O., Fransson, T., 1995. Body mass, wing length and spring arrival of the Ortolan bunting Emberiza hortulana. Ornis Fennica 72, 14-18.
    Sokolov, L.V., Markovets, M.Y., Morozov, Y.G., 1999. Long-term dynamics of the mean date of autumn migration in passerines on the Courish Spit of the Baltic Sea. Avian Ecol. Behav. 2, 1-18.
    Sturtz, S., Ligges, U., Gelman, A., 2005. R2WinBUGS: a Package for Running WinBUGS from R. J. Stat. Softw. 12, 1-16.
    Stutchbury, B.J.M., Gow, E.A., Done, T., MacPherson, M., Fox, J.W., Afanasyev, V., 2011. Effects of post-breeding moult and energetic condition on timing of songbird migration into the tropics. Proc. R. Soc. B. 278, 131-137. https://doi.org/10.1098/rspb.2010.1220.
    Svensson, L., 1992. Identification Guide to European Passerines, 4th Edition. British Trust for Ornithology, Stockholm.
    Thomas, C.D., Lennon, J.J., 1999. Birds extend their ranges northwards. Nature 399, 213. https://doi.org/10.1038/20335.
    van Buskirk, J., Mulvihill, R.S., Leberman, R.C., 2009. Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Global Change Biol. 15, 760-771. https://doi.org/10.1111/j.1365-2486.2008.01751.x.
    van Buskirk, J., Mulvihill, R.S., Leberman, R.C., 2010. Declining body sizes in North American birds associated with climate change. Oikos 119, 1047-1055. https://doi.org/10.1111/j.1600-0706.2009.18349.x.
    Visser, M.E., Perdeck, A.C., van Balen, J.H., Both, C., 2009. Climate change leads to decreasing bird migration distances. Global Change Biol. 15, 1859-1865. https://doi.org/10.3390/birds2040027.
    Yong, W., Moore, F.R., 1994. Flight morphology, energetic condition, and the stopover biology of migrating thrushes. Auk 111, 683-692. https://doi.org/10.1093/auk/111.3.683.
    Weeks, B.C., Willard, D.E., Zimova, M., Ellis, A.A., Witynski, M.L., Hennen, M., et al., 2019. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316-325. https://doi.org/10.1111/ele.13434.
    Wernham, C.V., Toms, M.P., Marchant, J.H., Clark, J.A., Siriwardena, G.M., Baillie S.R., 2002. The Migration Atlas: Movements of the Birds of Britain and Ireland. T. & A.D. Poyser, London.
    Wobker, J., Heim, W., Schmaljohann, H., 2021. Sex, age, molt strategy, and migration distance explain the phenology of songbirds at a stopover along the East Asian flyway. Behav. Ecol. Sociobiol. 75, 25. https://doi.org/10.1007/s00265-020-02957-3.
    Wood, S., Scheipl, F., 2013. gamm4: generalized additive mixed models using mgcv and lme4. https://cran.r-project.org/web/packages/gamm4/index.html.
    Yamaura, Y., Schmaljohann, H., Lisovski, S., Senaki, M., Kawamura, K., Fujimaki, Y., et al., 2016. Tracking the Stejneger's stonechat Saxicola stejnegeri along the East Asia-Australian Flyway from Japan via China to southeast Asia. J. Avian Biol. 48, 197-202. https://doi.org/10.1111/jav.01054.
    Yom-Tov, Y., 2001. Global warming and body mass decline in Israeli passerine birds. Proc. R. Soc. B. 268, 947-952. https://doi.org/10.1098/rspb.2001.1592.
    Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C.J.R., Du Feu, R., 2006. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91-101. doi: 10.1111/j.0030-1299.2006.14183.x
    Yong, D.L., Liu, Y., Low, B.W., Espanola, C.P., Choi, C.Y., Kawakami, K., 2015. Migratory songbirds in the East Asian-Australasian Flyway: a review from a conservation perspective. Bird Conserv. Int. 25, 1-37. https://doi.org/10.1017/S0959270914000276.
    Yong, D.L., Heim, W., Chowdhury, S.U., Choi, C-Y., Ktitorov, P., Kulikova, O., et al., 2021. The state of migratory landbirds in the East Asian Flyway: distributions, threats, and conservations needs. Front. Ecol. Evol. 9, 613172. https://doi.org/10.3389/fevo.2021.613172.
    Zimova, M., Willard, D.E., Winger, B.M., Weeks, B.C., 2021. Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology. J. Anim. Ecol. 90, 2348-2361. https://doi.org/10.1111/1365-2656.13543.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (121) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return