Alerstam, T., 2011. Optimal bird migration revisited. J. Ornithol. 152, 5-23. https://doi.org/10.1007/s10336-011-0694-1. |
Allcock, J.A., Leader, P.J., Stanton, D.J., Leven, M.R., Leung, K.K.S., 2018. Permanently inundated Phragmites reedbed supports higher abundance of wetland-dependent bird species that drier reedbed during southward migration through Hong Kong. Forktail 34, 9-13. |
Allcock, J.A., Chow, G.K.L., Dingle, C., Leader, P.J., Leung, K.K.S., Ma, C.K.W., et al., 2021. Bird ringing in Hong Kong during 2018. In: Allcock, J.A., Chow, G. (Eds. ), Hong Kong Bird Report 2018. Hong Kong Bird Watching Society, Hong Kong, pp. 225-244. |
Ambrosis, R., Cuervo, J.J., du Feu, C., Fiedler, W., Musitelli, F., Rubolini, D., et al., 2016. Migratory connectivity and effects of winter temperatures on migratory behaviour of the European robin Erithacus rubecula. J. Anim. Ecol. 85, 749-760. https://www.jstor.org/stable/44081564. |
Ambrosini, R., Rubolini, D., Moeller, A.P., Bani, L., Clark, J., Karcza, Z., et al., 2011. Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Climate Res. 49, 131-141. https://doi.org/10.3354/CR01025. |
Barton, G.G., Sandercock, B.K., 2017. Long-term changes in the seasonal timing of landbird migration on the Pacific Flyway. Condor 120, 30-46. https://doi.org/10.1650/CONDOR-17-88.1. |
Bearhop, S., Fiedler, W., Furness, R.W., Votier, S.C., Waldron, S., Newton, J., et al., 2005. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502-504. https://doi.org/10.1126/science.1115661. |
Bergmann, K., 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3, 595-708. |
Bitterlin, L.R., van Buskirk, J., 2014. Ecological and life history correlates of changes in avian migration timing in response to climate change. Climate Res. 61, 109-121. https://doi.org/10.3354/CR01238. |
BirdLife International, 2021. IUCN Red List for birds. http://www.birdlife.org (Accessed 24 February 2021). |
Bozo, L., Heim, W., 2016. Sex-specific migration of Phylloscopus warblers at a stopover site in Far Eastern Russia. Ringing Migration 31, 41-46. doi: 10.1080/03078698.2016.1195213 |
Bozó, L., Csörgő, T., Heim, W., 2020. Stopover duration and body mass change of two Siberian songbird species at a refuelling site in the Russian Far East. Ornithol. Sci. 19, 159 - 166. https://doi.org/10.2326/osj.19.159. |
Bozó, L., Csörgő, T., Heim, W., 2021. Factors controlling the migration phenology of Siberian Phylloscopus species. J. Ornithol. 162, 53-59. https://doi.org/10.1007/s10336-020-01805-5. |
Bozó, L., Csorgő, T., Heim, W., 2018. Weather conditions affect spring and autumn migration of Siberian leaf warblers. Avian Res. 9, 33. https://doi.org/10.1186/s40657-018-0126-5. |
Brisson-Curadeau É., Elliott, K.H., Côté, P., 2020. Factors influencing fall departure phenology in migratory birds that bred in northeastern North America. Auk 137, ukz064. https://doi.org/10.1093/auk/ukz064. |
Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd ed. Springer-Verlag, New York. |
Carey, G.J., Chalmers, M.L., Diskin, D.A., Kennerley, P.R., Leader, P.J., Lewthwaite, R.W., et al., 2001. The Avifauna of Hong Kong. Hong Kong Bird Watching Society, Hong Kong. |
Chmura, H.E., Krause, J.S., Pérez, J.H., Ramenofsky, M., Wingfield, J.C., 2020. Autumn migratory departure is influenced by reproductive timing and weather in an Arctic passerine. J. Ornithol. 161, 779-791. https://doi.org/10.1007/s10336-020-01754-z. |
Cooper, N.W., Murphy, M.T., Redmond, L.J., Dolan, A.C., 2011. Reproductive correlates of spring arrival date in the Eastern Kingbird Tyrannus tyrannus. J. Ornithol. 152, 143-152. https://doi.org/10.1007/s10336-010-0559-z. |
Covino, K.M., Horton, K.G., Morris, S.R., 2020. Seasonally specific changes in migration phenology across 50 years in the Black-throated Blue Warbler. Auk 137, ukz080. https://doi.org/10.1093/auk/ukz080. |
Curley, S.R., Manne, L.L., Veit, R.R., 2020. Differential winter and breeding range shifts: implications for avian migration distances. Divers. Distrib. 26, 415-425. doi: 10.1111/ddi.13036 |
Dorian, N.N., Lloyd-Evans, T.L., Reed, J.M., 2020. Non-parallel changes in songbird migration timing are not explained by changes in stopover duration. PeerJ 8, e8975. https://doi.org/10.7717/peerj.8975. |
Dorzhieva, A., Nakata, M., Takano, K., Ito, Y., Akahara, K., Tachikawa, K., et al., 2020. Bird-banding records reveal changes in avian spring and autumn migration timing in a coastal forest near Niigata. Ornithol. Sci. 19, 41-53. https://doi.org/10.2326/osj.19.41. |
Ellwood, E.R., Gallinat, A., Primack, R.B., Lloyd-Evans, T.L., 2015. Autumn migration of North American landbirds. In: Wood, E.M., Kellermann, J.L. (Eds. ), Phenological Synchrony and Bird Migration: Changing Climate and Seasonal Resources in North America, Studies in Avian Biology (no. 47). CRC Press, Boca Raton, pp. 193-205. |
Forchhammer, M.C., Post, E., Stenseth, N.C., 2002. North Atlantic Oscillation timing of long- and short-distance migration. J. Anim. Ecol. 71, 1002-1014. https://doi.org/10.1046/j.1365-2656.2002.00664.x. |
Gallinat, A.S., Primack, R.B., Wagner, D.L., 2015. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169-176. https://doi.org/10.1016/j.tree.2015.01.004. |
Gardner, J.L., Heinsohn, R., Joseph, L., 2009. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. B. 276, 3845-3852. https://doi.org/10.1098/rspb.2009.1011. |
Gosler, A.G., Greenwood, J.J.D., Baker, J.K., Davidson, N.C., 1998. The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study 45, 92-103. doi: 10.1080/00063659809461082 |
Gwinner, E., 2003. Circannual rhythms in birds. Curr. Opin. Neurobiol. 13, 770-778. https://doi.org/10.1016/j.conb.2003.10.010. |
Haest, B., Hüppop, O., van de Pol, M., Bairlein, F., 2019. Autumn bird migration phenology: a potpourri of wind, precipitation and temperature effects. Global Change Biol. 25, 4064-4080. https://doi.org/10.1111/gcb.14746. |
Hahn, S., Korner-Nievergelt, F., Emmenegger, T., Amrhein, V., Csorg, T., Gursoy, A., et al., 2016. Longer wings for faster springs - wing length relates to spring phenology in a long-distance migrant across its range. Ecol. Evol. 6, 68-77. https://doi.org/10.1002/ece3.1862. |
Harris, J.B.C., Yong, D.L., Sodhi, N.S., Subaraj, R., Fordham, D.A., Brook, B.W., 2013. Changes in autumn arrival of long-distance migratory birds in Southeast Asia. Climate Res. 57, 133-141. https://doi.org/10.3354/CR01172. |
Hasselquist, D., Montràs-Janer, T., Tarka, M., Hansson, B., 2017. Individual consistency of long-distance migration in a songbird: significant repeatability of autumn route, stopovers and wintering sites but not in timing of migration, J. Avian Biol. 48, 91-102. https://doi.org/10.1111/jav.01292. |
Heim, W., Pedersen, L., Heim, R., Kamp, J., Smirenski, S.M., Thomas, A., et al., 2018. Full annual cycle tracking of a small songbird, the Siberian Rubythroat Calliope calliope, along the East Asian flyway. J. Ornithol. 159, 893-899. https://doi.org/10.1007/s10336-018-1562-z. |
Hitch, A.T., Leberg, P.L., 2007. Breeding distributions of North American bird species moving north as a result of climate change. Conserv. Biol. 21, 534-539. http://www.jstor.org/stable/4620836. doi: 10.1111/j.1523-1739.2006.00609.x |
Horton, K.G., La Sorte, F.A., Sheldon, D., Lin, T-Y., Winner, K., Bernstein, G., et al., 2020. Farnsworth, phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Chang. 10, 63-68. https://doi.org/10.1038/s41558-019-0648-9. |
Hubálek, Z., 2003. Spring migration of birds in relation to North Atlantic Oscillation. Folia Zool. 52, 287-298. |
Hurlbert, A.H., Liang, Z., 2012. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS One 7, e31662. https://doi.org/10.1371/journal.pone.0031662. |
Hüppop, O., Hüppop, K., 2003. North Atlantic Oscillation and timing of spring migration in birds. Proc. R. Soc. B. 270, 233-240. https://doi.org/10.1098/rspb.2002.2236. |
Imlay, T.L., Mann, H.A.R., Taylor, P.D., 2021. Autumn migratory timing and pace are driven by breeding season carryover effects. Anim. Behav. 177, 207-214. https://doi.org/10.1016/j.anbehav.2021.05.003. |
Jenni, L., Kery, M., 2003. Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc. R. Soc. B. 270, 1467-1471. https://doi.org/10.1098/rspb.2003.2394. |
Jirinec, V., Burner, R.C., Amaral, B.R., Bierregaard, R.O., Fernández-Arellano, G., Hernández-Palma, A., et al., 2021. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743. https://doi.org/10.1126/sciadv.abk1743. |
Knudsen, E., Linden, A., Ergon, T., Jonzen, N., Vik, J.O., Knape, J., et al., 2007. Characterizing bird migration phenology using data from standardized monitoring at bird observatories. Climate Res. 35, 59-77. https://doi.org/10.3354/cr00714. |
Koleček, J., Adamík, P., Reif, J., 2020. Shifts in migration phenology under climate change: temperature vs. abundance effects in birds. Climatic Change 159, 177-194. https://doi.org/10.1007/s10584-020-02668-8. |
La Sorte, F.A., Thompson, F.R., 2007. Poleward shifts in winter ranges of North American birds. Ecology 88, 1803-1812. https://doi.org/10.1890/06-1072.1. |
La Sorte, F.A., Fink, D., Hochachka, W.M., DeLong, J.P., Kelling, S., 2013. Population-level scaling of avian migration speed with body size and migration distance for powered fliers. Ecology 94, 1839-1847. https://doi.org/10.1890/12-1768.1. |
La Sorte, F.A., Hochachka, W.M., Farnsworth, A., Sheldon, D., Fink, D., Geevarghese, J., et al., 2015. Migration timing and its determinants for nocturnal migratory birds during autumn migration, J. Anim. Ecol. 84, 1202-1212. https://doi.org/10.1111/1365-2656.12376. |
Lehikoinen, E.S.A., Sparks, T.H., Zalakevicius, M., 2004. Arrival and departure dates. Adv. Ecol. Res. 35, 1-31. https://doi.org/10.1016/S0065-2504(04)35001-4. |
Linden, A., Meller, K., Knape, J., 2016. Empirical comparison of models for the phenology of bird migration, J. Avian Biol. 48, 255-265. https://doi.org/10.1111/jav.00994. |
Maclean, I.M.D., Austin, G.E., Rehfisch, M.M., Blew, J., Crowe, O., Delany, S., et al., 2008. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biol. 14, 2489-2500. https://doi.org/10.1111/j.1365-2486.2008.01666.x. |
Martín, B., Onrubia, A., Ferrer, M., 2016. Migration timing responses to climate change differ between adult and juvenile white storks across western Europe. Climate Res. 69, 9-23. https://doi.org/10.3354/cr01390. |
McDermott, M.E., DeGroote, L.W., 2017. Linking phenological events in migratory passerines with a changing climate: 50 years in the Laurel Highlands of Pennsylvania. PLoS One 12, e0174247. https://doi.org/10.1371/journal.pone.0174247. |
McKinnon, E.A., Macdonald, C.M., Gilchrist, H.G., Love, O.P., 2016. Spring and fall migration phenology of an Arctic-breeding passerine. J. Ornithol. 157, 681-693. https://doi.org/10.1007/s10336-016-1333-7. |
Miller-Rushing, A.J., Lloyd-Evans, T.L., Primack, R.B., Satzinger, P., 2008. Bird migration times, climate change, and changing population sizes. Global Change Biol. 14, 1959-1972. https://doi.org/10.1111/j.1365-2486.2008.01619.x. |
Møller, A.P., van Nus, T., Hobson, K.A., 2021. Rapid reduction in migration distance in relation to climate in a long-distance migratory bird. Curr. Zool. 68, 233-235. |
Newton, I., 2008. The Migration Ecology of Birds. Academic Press, London. |
Newton, I., 2011. Migration within the annual cycle: species, sex and age differences. J. Ornithol. 152, 169-185. https://doi.org/10.1007/s10336-011-0689-y. |
Nilsson, C., Klaassen, R.H.G., Alerstam, T., 2013. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181, 837-845. https://doi.org/10.1086/670335. |
Nowakowski, J.K., Szulc, J., Remisiewicz, M., 2014. The further the flight, the longer the wing: relationship between wing length and migratory distance in Old World reed and bush Warblers (Acrocephalidae and Locustellidae). Ornis Fennica 91, 178-186. |
Ozarowska, A., Zaniewicz, G., Meissner, W., 2018. Spring arrival timing varies between the groups of blackcaps (Sylvia atricapilla) differing in wing length. Ann. Zool. Fenn. 55, 45-54. https://doi.org/10.5735/086.055.0105. |
Paxton, K.L., Cohen, E.B., Paxton, E.H., Németh, Z, Moore, F.R., 2014. Niño–Southern oscillation is linked to decreased energetic condition in long-distance migrants. PLoS ONE 9, e95383. https://doi.org/10.1371/journal.pone.0095383. |
Potti, J., 1998. Arrival time from spring migration in male Pied Flycatchers: individual consistency and familial resemblance. Condor 100, 702-708. https://doi.org/10.2307/1369752. |
R Core Development Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. |
Remacha, C., Rodríguez, C., de la Puente, J., Pérez-Tris, J., 2020. Climate change and maladaptive wing shortening in a long-distance migratory bird. Auk 137, ukaa012. https://doi.org/10.1093/auk/ukaa012. |
Rotics, S., Turjeman, S., Kaatz, M., Resheff, Y.S., Zurell, D., Sapir, N., et al., 2017. Wintering in Europe instead of Africa enhances juvenile survival in a long-distance migrant. Anim. Behav. 126, 79-88. https://doi.org/10.1016/j.anbehav.2017.01.016. |
Salewski, V., Hochachka, W.M., Fiedler, W., 2010. Global warming and Bergmann's rule: do central European passerines adjust their body size to rising temperatures? Oecologia 162, 247-260. doi: 10.1007/s00442-009-1446-2 |
Salewski, V., Siebenrock, K-H., Hochachka, W.M., Woog, F., Fiedler, W., 2014. Morphological change to birds over 120 years is not explained by thermal adaptation to climate change. PLoS ONE 9, e101927. https://doi.org/10.1371/journal.pone.0101927. |
Smallwood, J.A., 1988. A mechanism of sexual segregation by habitat in American kestrels (Falco sparverius) wintering in South-Central Florida. Auk 105, 36-46. https://doi.org/10.1093/auk/105.1.36. |
Stolt, B.O., Fransson, T., 1995. Body mass, wing length and spring arrival of the Ortolan bunting Emberiza hortulana. Ornis Fennica 72, 14-18. |
Sokolov, L.V., Markovets, M.Y., Morozov, Y.G., 1999. Long-term dynamics of the mean date of autumn migration in passerines on the Courish Spit of the Baltic Sea. Avian Ecol. Behav. 2, 1-18. |
Sturtz, S., Ligges, U., Gelman, A., 2005. R2WinBUGS: a Package for Running WinBUGS from R. J. Stat. Softw. 12, 1-16. |
Stutchbury, B.J.M., Gow, E.A., Done, T., MacPherson, M., Fox, J.W., Afanasyev, V., 2011. Effects of post-breeding moult and energetic condition on timing of songbird migration into the tropics. Proc. R. Soc. B. 278, 131-137. https://doi.org/10.1098/rspb.2010.1220. |
Svensson, L., 1992. Identification Guide to European Passerines, 4th Edition. British Trust for Ornithology, Stockholm. |
Thomas, C.D., Lennon, J.J., 1999. Birds extend their ranges northwards. Nature 399, 213. https://doi.org/10.1038/20335. |
van Buskirk, J., Mulvihill, R.S., Leberman, R.C., 2009. Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Global Change Biol. 15, 760-771. https://doi.org/10.1111/j.1365-2486.2008.01751.x. |
van Buskirk, J., Mulvihill, R.S., Leberman, R.C., 2010. Declining body sizes in North American birds associated with climate change. Oikos 119, 1047-1055. https://doi.org/10.1111/j.1600-0706.2009.18349.x. |
Visser, M.E., Perdeck, A.C., van Balen, J.H., Both, C., 2009. Climate change leads to decreasing bird migration distances. Global Change Biol. 15, 1859-1865. https://doi.org/10.3390/birds2040027. |
Yong, W., Moore, F.R., 1994. Flight morphology, energetic condition, and the stopover biology of migrating thrushes. Auk 111, 683-692. https://doi.org/10.1093/auk/111.3.683. |
Weeks, B.C., Willard, D.E., Zimova, M., Ellis, A.A., Witynski, M.L., Hennen, M., et al., 2019. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316-325. https://doi.org/10.1111/ele.13434. |
Wernham, C.V., Toms, M.P., Marchant, J.H., Clark, J.A., Siriwardena, G.M., Baillie S.R., 2002. The Migration Atlas: Movements of the Birds of Britain and Ireland. T. & A.D. Poyser, London. |
Wobker, J., Heim, W., Schmaljohann, H., 2021. Sex, age, molt strategy, and migration distance explain the phenology of songbirds at a stopover along the East Asian flyway. Behav. Ecol. Sociobiol. 75, 25. https://doi.org/10.1007/s00265-020-02957-3. |
Wood, S., Scheipl, F., 2013. gamm4: generalized additive mixed models using mgcv and lme4. https://cran.r-project.org/web/packages/gamm4/index.html. |
Yamaura, Y., Schmaljohann, H., Lisovski, S., Senaki, M., Kawamura, K., Fujimaki, Y., et al., 2016. Tracking the Stejneger's stonechat Saxicola stejnegeri along the East Asia-Australian Flyway from Japan via China to southeast Asia. J. Avian Biol. 48, 197-202. https://doi.org/10.1111/jav.01054. |
Yom-Tov, Y., 2001. Global warming and body mass decline in Israeli passerine birds. Proc. R. Soc. B. 268, 947-952. https://doi.org/10.1098/rspb.2001.1592. |
Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C.J.R., Du Feu, R., 2006. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91-101. doi: 10.1111/j.0030-1299.2006.14183.x |
Yong, D.L., Liu, Y., Low, B.W., Espanola, C.P., Choi, C.Y., Kawakami, K., 2015. Migratory songbirds in the East Asian-Australasian Flyway: a review from a conservation perspective. Bird Conserv. Int. 25, 1-37. https://doi.org/10.1017/S0959270914000276. |
Yong, D.L., Heim, W., Chowdhury, S.U., Choi, C-Y., Ktitorov, P., Kulikova, O., et al., 2021. The state of migratory landbirds in the East Asian Flyway: distributions, threats, and conservations needs. Front. Ecol. Evol. 9, 613172. https://doi.org/10.3389/fevo.2021.613172. |
Zimova, M., Willard, D.E., Winger, B.M., Weeks, B.C., 2021. Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology. J. Anim. Ecol. 90, 2348-2361. https://doi.org/10.1111/1365-2656.13543. |