Yunzhu Liu, Lan Wu, Jia Guo, Shengwu Jiao, Sicheng Ren, Cai Lu, Yuyu Wang, Yifei Jia, Guangchun Lei, Li Wen, Liying Su. 2022: Habitat selection and food choice of White-naped Cranes (Grus vipio) at stopover sites based on satellite tracking and stable isotope analysis. Avian Research, 13(1): 100060. DOI: 10.1016/j.avrs.2022.100060
Citation: Yunzhu Liu, Lan Wu, Jia Guo, Shengwu Jiao, Sicheng Ren, Cai Lu, Yuyu Wang, Yifei Jia, Guangchun Lei, Li Wen, Liying Su. 2022: Habitat selection and food choice of White-naped Cranes (Grus vipio) at stopover sites based on satellite tracking and stable isotope analysis. Avian Research, 13(1): 100060. DOI: 10.1016/j.avrs.2022.100060

Habitat selection and food choice of White-naped Cranes (Grus vipio) at stopover sites based on satellite tracking and stable isotope analysis

More Information
  • Corresponding author:

    E-mail address: jiayifei@bjfu.edu.cn (Y. Jia)

    E-mail address: guangchun.lei@foxmail.com (G. Lei)

  • * Corresponding author. Centre for East Asian-Australasian Flyway Studies, Beijing Forestry University, Beijing, 100083, China.
    ** Corresponding author. Centre for East Asian-Australasian Flyway Studies, Beijing Forestry University, Beijing, 100083, China.
    1 These authors contributed equally to this work.

  • Received Date: 23 Apr 2022
  • Rev Recd Date: 13 Aug 2022
  • Accepted Date: 23 Aug 2022
  • Available Online: 11 Jan 2023
  • Publish Date: 12 Sep 2022
  • By combining satellite tracking, land-cover extracted from Landsite 8 images, and the traditional stable isotope analysis, we studied the habitat selection and food preference of a vulnerable migratory waterbird, the White-naped Crane (Grus vipio), in one of its key stagging sites, the Shandian River Basin in the semi-arid northern China, to provide knowledge that is critical for its conservation in the Anthropocene. Our results showed that the White-naped Cranes used both uplands and natural wetlands in the stopover site. While the cranes used farmland and natural land cover equally as night-time roosting grounds, they spent most daytime foraging at farmlands. Despite the extensive usage of croplands as their foraging ground, the Bayesian mixing models based on stable isotopic analysis revealed that crop residues after harvesting, such as Maize (Zea mays) and Naked Oat (Avena chinensis), were only a small fraction of the White-naped Cranes' diet (~ 19%), and their diet composited mainly natural plants, such as Allium ledebourianum, Potentilla anserina, and P. tanacetifoli. Moreover, more than 20% of the total wetlands in the region were modelled as home range of the cranes. On contrast, less than 10% of croplands and about 1% of the unused uplands were identified as home range. In addition, the entire core habitats were located in natural wetlands. Our findings demonstrated the importance of natural wetlands for the survival of the threatened crane. However, the satellite-derived land cover data showed that croplands increased rapidly in the last decade in this area, at the expense of natural wetlands. With the sharp decrease of White-naped Crane population in China, the conservation of stopover sites becomes imperative. Based on our analysis, we recommend the following management actions: conserving adequate natural wetland area, regulating anthropogenic pressures such as the use of herbicides, expanding the duration and extent of current conservation regulations, establishing a comprehensive monitoring program, and initiating basin-scale ecological restoration, for effective conservation of this threatened species. These integrated conservation strategies for migratory waterbirds are necessary, considering the rapid land-cover changes and agricultural expansion that have been occurring in East Asian-Australasian Flyway, especially in the semi-arid temperate zone.

  • The mutual adaptations and counter-defense strategies between brood parasitic birds such as cuckoos (Cuculus spp.) and their hosts are comparable to an arms race for studying coevolution (Rothstein 1990; Davies 2000, 2015). Coevolutionary theory predicts that if brood parasitism is costly, hosts will evolve anti-parasite defense against brood parasitic birds, while brood parasitic birds will evolve parasitic strategies to crack their hosts' defenses. To recognize and reject parasitic eggs is the most common and effective strategy among anti-brood parasite defense mechanisms (Davies 2000; Soler 2014), and the most common methods of hosts are therefore egg ejection and nest desertion (Šulc et al. 2019). In response to egg rejection by hosts, many parasitic birds evolve counter-adaptations to overcome the hosts' defenses by laying mimicking (Brooke and Davies 1988; Avilés et al. 2006; Stoddard and Stevens 2010; Yang et al. 2010; Antonov et al. 2012; Abernathy et al. 2017; Meshcheryagina et al. 2018) or hidden eggs (Brooker and Brooker 1989; Brooker et al. 1990; Langmore et al. 2009; Gloag et al. 2014). Currently, more than 60% of cuckoo species lay eggs that mimic one or many different host eggs (Johnsgard 1997; Payne 2005). Generally, parasitic eggs mimic the background color, spot size, spot color, spot distribution, and shapes of the host eggs (Avilés et al. 2006; Starling et al. 2006; Spottiswoode and Stevens 2010; Antonov et al. 2012; de la Colina et al. 2012; Honza et al. 2014; Stoddard et al. 2014; Abernathy et al. 2017; Attard et al. 2017; Meshcheryagina et al. 2018). Egg mimicry makes it more challenging for hosts to detect the parasitic eggs (Cassey et al. 2008; Spottiswoode and Stevens 2010). And many hosts cannot recognize the parasitic egg, and are therefore forced to accept foreign eggs (Davies 2000; Langmore et al. 2003; Stokke et al. 2016).

    Variable egg colors and spotting patterns are unique characteristics of birds (Hauber 2014). The spots are mainly composed of two pigments, protoporphyrin and biliverdin (Kennedy and Vevers 1976; Mikšík et al. 1996; Gorchein et al. 2009). There are many explanations for the role of the egg spots (Kilner 2006; Reynolds et al. 2009; Maurer et al. 2011; Stokke et al. 2017).

    The first explanation is that spots are used as a protective coloration. Newton (1896) believed that spots can help to conceal the eggs and reduce the risk of predation (Kilner 2006; Hanley et al. 2013; Duval et al. 2016).

    The second explanation is related to signal function for sexual selection. Some studies have shown that the pigments from the spots can imply the quality of the female or chick as well as the willingness of the female to reproduce, which affects male parental investment (Sanz and García-Navas 2009; López-de-Hierro and De Neve 2010; Stoddard and Stevens 2011; Stoddard et al. 2012; Hargitai et al. 2016; Poláček et al. 2017).

    The third explanation is associated with structural function as egg spots can improve eggshell strength (Gosler et al. 2005; García-Navas et al. 2010; Bulla et al. 2012; Hargitai et al. 2013, 2016).

    The fourth explanation is related to brood parasitism. Swynnerton (1918) proposed that the spots can be used in defense against cuckoo parasitism. This signature hypothesis predicts that cuckoo hosts should evolve less variation within their own clutches (to make it easier to pick out a parasitic egg), and more variation between the clutches of different females within a species (to make it harder for cuckoos evolve to a good match) (Swynnerton 1918). Much previous work agreed with this theoretical prediction (Davies and Brooke 1989a, b; Soler and Møller 1996; Stokke et al. 2002, 2007; Takasu 2003; Stoddard and Stevens 2010; Medina et al. 2016).

    In fact, in response to cuckoo egg mimicry, hosts have evolved egg spotting patterns that can work as a unique "signature" for the female host (Davies 2000; Spottiswoode and Stevens 2010; Stoddard et al. 2014), which then makes it easier to detect foreign eggs (Swynnerton 1918; Stoddard and Stevens 2010; Davies 2011; Caves et al. 2015; Stokke et al. 2017). For example, the eggs of Tawny-flanked Prinia (Prinia subflava) have noticeable signatures, i.e., different egg color, egg spot size, egg shape, and distribution of egg spots, and they can accurately identify foreign eggs that are different from own eggs using these features (Spottiswoode and Stevens 2010). More recently, an experimental study showed that a frequent host of the parasitic Shiny Cowbird (Molothrus bonariensis), the Chalk-browed Mockingbirds (Mimus saturninus), rejected spotted eggs (32.4% of trials, n = 11 of 34 eggs) less than unspotted eggs (58.3% of trials, n = 21 of 36 eggs), irrespective of color (Hanley et al. 2019).

    The Great Tit (Parus major) is a passerine bird in the tit family Paridae and is grouped together with numerous other subspecies. However, DNA studies have shown these other subspecies to be distinctive from the Great Tit, and have now been separated into two distinct species, the Cinereous Tit (Parus cinereus) of southern Asia, and the Japanese Tit (P. minor) of East Asia. The Great Tit remains the most widespread species in the genus Parus (Päckert et al. 2005). Recent studies have shown that coevolutionary interactions have existed between tits and cuckoos in China (Liang et al. 2016; Yang et al. 2019). In China, the Cinereous Tit has evolved the ability to recognize eggs and the rejection of non-mimetic eggs by Cinereous Tits is from 54.1% up to 100% (Liang et al. 2016). However, whether spots play a role in egg recognition has not been studied. The aims of our study were to further test the egg recognition ability of Cinereous Tits and to explore the role of eggshell spots in egg recognition in particular.

    The study was carried out in Saihanba National Forest Park, Weichang, Hebei (42°02ʹ-42°36ʹN, 116°51ʹ-117°39ʹE). It is the main natural secondary forest and plantation forest area in Hebei, with an altitude of 1500 m. It has a cold temperate continental monsoon climate (Liu et al. 2017). Zuojia Nature Reserve was in Jilin, northeastern China (44°1ʹ-45°0ʹN, 126°0ʹ-126°8ʹE). The mean altitude is 300 m, with a continental monsoon climate and four distinct seasons in the temperate zone. Vegetation is temperate needle broad-leaved mixed forest zone with secondary forest (Yu et al. 2017). We monitored Cinereous Tits nesting in nest boxes during the breeding seasons each year. The nest boxes were attached to trees about 3 m above the ground, facing in a random direction (Liang et al. 2016; Yu et al. 2017).

    Field experiments were carried out from April to August in 2018 and 2019. The pure white eggs (without spots) of White-rumped Munias (Lonchura striata) show the same color as the background of Cinereous Tit eggs (Fig. 1a). The eggs of White-rumped Munias (1.28 ± 0.12 g in egg mass, 16.20 ± 0.82 mm × 12.46 ± 0.68 mm in egg size, n = 15) are a bit smaller than the eggs of Cinereous Tits (1.42 ± 0.20 g in egg mass, 17.03 ± 0.72 mm × 13.00 ± 0.36 mm in egg size, n = 136). Except this, the only difference between White-rumped Munias and Cinereous Tit eggs was that munias eggs were without spots (Fig. 1a). We used professional marker (APM 25201, M & G) to speckle the eggs of White-rumped Munias to make them more similar to those of tits (Fig. 1b).

    Figure  1.  Brood parasitism experiments conducted in the nests of the Cinereous Tits (a seven Cinereous Tit eggs and one White-rumped Munia egg; b seven Cinereous Tit eggs and one White-rumped Munia speckled egg)

    We checked the nest boxes regularly to determine the breeding status of the tits. One or two days after the clutch was completed, we experimentally parasitized nests by (1) adding one pure white eggs of White-rumped Munias (without spots) to the nests of Cinereous Tits; or (2) by adding one speckled White-rumped Munia eggs (with spots) to the nests of Cinereous Tits. The experimental nests were re-examined after 5 days. On the 6th day, if the experimental egg was still in the nest, and the host had not deserted, the experimental egg was considered accepted by the host. However, if the experimental egg had disappeared or was damaged (but not own eggs), it was considered rejected by the host. If the nests were preyed on or destroyed within the 6 days, they were excluded from the experiment (Liang et al. 2016). We did four experiments at these two sites, only experiment with white eggs in Zuojia was carried out in 2018 and the rest of experiments in 2019.

    Statistical analysis was performed using IBM SPSS 25.0 for Windows (IBM Inc., USA). Rejection rates of White-rumped Munia eggs and speckled White-rumped Munia eggs were compared using Fisher's exact test. All tests were two-tailed, with statistical significance at p < 0.05. The data were expressed as mean ± standard deviation (mean ± SD).

    In the Saihanba region in Hebei, the rejection rate of munia eggs and speckled munia eggs by Cinereous Tits was 50% (n = 18) and 15.4% (n = 26), respectively (Fig. 2). In the Zuojia Nature Reserve in Jilin, the rejection rate of munia eggs and speckled munia eggs by Cinereous Tits was 53.3% (n = 15) and 11.1% (n = 9) (Fig. 2). Cinereous tits from the two populations showed a high rejection of munia eggs and a low rejection of speckled munia eggs. And Cinereous Tits from the two populations showed no differences in their ability to recognize the two types of experimental eggs (Fisher's exact test, all p > 0.05). Thus, these results were combined. Experimental parasitism results showed that the recognition rates of White-rumped Munia eggs and speckled White-rumped Munia eggs by Cinereous Tits were 51.5% (n = 33) and 14.3% (n = 35), respectively. There was a significant difference in the recognition rate between the two egg types (Fisher's exact test, χ 2 = 10.757, df= 1, p = 0.002).

    Figure  2.  Rejection frequency of foreign eggs in parasitism experiments by Cinereous Tits. Numbers on bars refer to sample size

    From the eye of human being, the pure white eggs of White-rumped Munia appeared similar to Cinereous Tit eggs in the background color. But our results indicated that Cinereous Tits have high recognition ability for White-rumped Munia eggs. It could be due to the fact that from the Cinereous Tit's point of view there is still a difference in the background color between the eggs of the White-rumped Munia and the Cinereous Tit's own eggs. For example, tits could perceive UV color that humans cannot see (Cuthill et al. 2000) and therefore they could potentially reject experimental eggs based on these UV signals (Šulc et al. 2016). It could also be that the eggs of White-rumped Munia lack spots compared with those of Cinereous Tits themselves. However, when we speckled the eggs of White-rumped Munias, the rejection rate of speckled munia eggs by Cinereous Tits was significantly lower than that of the non-speckled ones, which suggests that eggshell spots play an important role in egg recognition for Cinereous Tits. Swynnerton (1918) proposed that eggshell spots act as signatures, and are used as a brood parasitism defense strategy, mainly against cuckoo egg mimicry. Our results show that eggshell spots may play a key role in identifying and rejecting parasitic eggs for Cinereous Tits. Numerous studies have been undertaken on the role of egg spots in identifying foreign eggs, and several perspectives from these studies are summarized as follows: (1) egg spots do not contribute to egg recognition, and egg size is the main clue to identifying eggs (Mason and Rothstein 1986; Marchetti 2000; Langmore et al. 2003); (2) spot patterns and egg colors are more important than egg size for egg recognition (Rothstein 1978; Lawes and Kirkman 1996; Igic et al. 2015; Antonov et al. 2006); (3) both egg colors and spot patterns affect egg rejection behavior by the host, but the egg colors are more important than the spot patterns (Lahti and Lahti 2002; Spottiswoode and Stevens 2010; Luro et al. 2018); (4) egg spot patterns are more important than egg colors for egg recognition (Underwood and Sealy 2006; López-De-Hierro and Moreno-Rueda 2009; de la Colina et al. 2012; Šulc et al. 2016); and (5) spots on the blunt pole of the egg provide a cue for egg recognition (Lahti and Lahti 2002; Polačiková et al. 2007, 2010; Polačiková and Grim 2010). There were so many different signals influencing the host's response. As bird eggs themselves contain many characteristics, e.g., the background color, spot size, spot color, spot distribution, shapes and sizes of the host eggs, hosts may use the most available cues in making rejection decision, or may integrate several different egg characteristics in making such decision (Rothstein 1982; Spottiswoode and Stevens 2010). For example, some birds breed in the darkness of the tree cavities or deep burrows where visual cues are limited, tactile sensations become sensitive and thus egg size may play an important role in egg recognition (Mason and Rothstein 1986). However, in general, our experiment clearly shows that egg spots may play a role in the egg recognition process of Cinereous Tit. Although our study found that egg spots of Cinereous Tits may be essential for identifying and rejecting foreign eggs, it was unclear how the egg spots were deciphered by the tits and this required further investigation.

    Our findings suggest that egg spots of Cinereous Tits are important clues for egg recognition. However, the specific characteristics of the spot patterns, such as spot distribution, spot size, spot brilliance, chroma, hue, and UV may also be potential clues for egg identification. We suggest that future studies should focus on which of these features determine egg recognition and egg rejection behavior in Cinereous Tits and other tit species.

    We thank Saihanba National Forest Park of Hebei and Zuojia Nature Reserve of Jilin for their help and cooperation, and Jianwei Zhang, Xintong Li, Jing Yue and Hailin Lu for assistance with field work. We are also grateful to the two anonymous referees for their constructive comments.

    WL designed the study. JL, JY and HW carried out field experiments. CY performed statistical analyses. JL wrote the draft manuscript, and WL revised and improved the manuscript. All authors read and approved the final manuscript.

    The datasets used and analyzed in this study are available from the corresponding author on reasonable request.

    The experiments reported here comply with the current laws of China. Fieldwork was carried out under the permission from Saihanba National Forest Park, Hebei, and Zuojia Nature Reserve, Jilin, China. Experimental procedures were in agreement with the Animal Research Ethics Committee of Hainan Provincial Education Centre for Ecology and Environment, Hainan Normal University (Permit No. HNECEE-2011-001).

    Not applicable.

    The authors declare that they have no competing interests.

  • Alonso, J.C., Alonso, J.A., Bautista, L.M., 1994. Carrying capacity of staging areas and facultative migration extension in common cranes. J. Appl. Ecol. 31, 212-222.
    Angerer, J., Han, G., Fujisaki, I., Havstad, K., 2008. Climate change and ecosystems of Asia with emphasis on Inner Mongolia and Mongolia. Rangelands 30, 46-51.
    Batbayar, N., Yi, K., Zhang, J., Natsagdorj, T., Damba, I., Cao, L., et al., 2021. Combining tracking and remote sensing to identify critical year-round site, habitat use and migratory connectivity of a threatened waterbird species. Remote Sens. 13, 4049.
    Benhamou, S., 2011. Dynamic approach to space and habitat use based on biased random bridges. PLoS One 6, e14592.
    Benhamou, S., Cornélis, D., 2010. Incorporating movement behavior and barriers to improve kernel home range space use estimates. J. Wildlife Manage. 74, 1353-1360.
    BirdLife International, 2018. White-naped Crane, Grus vipio, Antigone vipio. The IUCN Red List of Threatened Species 2018: e. T22692073A131927305. . (Accessed 29 August 2022).
    Bridge, E.S., Thorup, K., Bowlin, M.S., Chilson, P.B., Diehl, R.H., Fléron, R.W., et al., 2011. Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61, 689-698.
    Cagnacci, F., Boitani, L., Powell, R.A., Boyce, M.S., 2010. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Phil. Trans. R. Soc. B. 365, 2157-2162.
    Cai, T., Huettmann, F., Lee, K., Guo, Y., 2019. Analyzing stopover and wintering habitats of hooded cranes (Grus monacha): implications for conservation and species dispersion in the East Asia. Pakistan J. Zool. 51, 1323.
    Calenge, C., 2011. Analysis of Animal Movements in R: the adehabitatLT Package. R Foundation for Statistical Computing, Vienna.
    Chen, Y., Yu, Y. -t., Meng, F., Deng, X., Cao, L, Fox, A.D., 2021. Migration routes, population status and important sites used by the globally threatened Black-faced Spoonbill (Platalea minor): a synthesis of surveys and tracking studies. Avian Res. 12, 74.
    del Hoyo, J., Elliott, A., Christie, D., 2018. Handbook of the Birds of the World. Lynx Edicions, Barcelona.
    DeNiro, M.J., Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Ac. 42, 495-506.
    Dugan, P.J., 1981. The importance of nocturnal foraging in shorebirds: a consequence of increased invertebrate prey activity. In: Jones, N.V., Wolff, W.J. (Eds. ), Feeding and Survival Strategies of Estuarine Organisms. Marine Science, vol. 15. Springer, Boston, pp. 251-260.
    Elphick, C.S., Oring, L.W., 2003. Conservation implications of flooding rice fields on winter waterbird communities. Agr. Ecosyst. Environ. 94, 17-29.
    Fedriani, J.M., Palomares F., Delibes, M., 1999. Niche relations among three sympatric Mediterranean carnivores. Oecologia 121, 138-148.
    Fox, A.D., Elmberg, J., Tombre, I.M., Hessel, R., 2017. Agriculture and herbivorous waterfowl: a review of the scientific basis for improved management. Biol. Rev. 92, 854-877.
    Gibbs, J.P., 2000. Wetland loss and biodiversity conservation. Conserv. Biol. 14, 314-317.
    Hahn, S., Hoye, B.J., Korthals, H., Klaassen, M., 2012. From food to offspring down: tissue-specific discrimination and turn-over of stable isotopes in herbivorous waterbirds and other avian foraging guilds. PLoS One 7, e30242.
    Hamer, K.C., Furness, R.W., 1993. Parental investment and brood defence by male and female great skuas Catharacts skua: the influence of food supply, laying date, body size and body condition. J. Zool. 230, 7-18.
    Harris, J., Mirande, C., 2013. A global overview of cranes: status, threats and conservation priorities. Chinese Birds 4, 189-209.
    Higuchi, H., Pierre, J.P., Krever, V., Andronov, V., Fujita, G., Ozaki, K., et al., 2004. Using a remote technology in conservation: satellite tracking White-Naped Cranes in Russia and Asia. Conserv. Biol. 18, 136-147.
    Hirzel, A.H., Posse, B., Oggier, P.A., Crettenand, Y., Glenz, C., Arlettaz, R., 2004. Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. J. Appl. Ecol. 41, 1103-1116.
    Hobson, K.A., Hughes, K.D., Ewins, P.J., 1997. Using stable-isotope analysis to identify endogenous and exogenous sources of nutrients in eggs of migratory birds: applications to Great Lakes contaminants research. Auk 114, 467-478.
    Hobson, K.A., Sirois, J., Gloutney, M.L., 2000. Tracing nutrient allocation to reproduction with stable isotopes: a preliminary investigation using colonial waterbirds of Great Slave Lake. Auk 117, 760-774.
    Horne, J.S., Garton, E.O., Krone, S.M., Lewis, J.S., 2007. Analyzing animal movements using Brownian bridges. Ecology 88, 2354-2363.
    IUCN, 2012. Conservation of the East Asian-Australasian Flyway and its threatened waterbirds, with particular reference to the Yellow Sea. . (Accessed 29 March 2022).
    Jia, Y., Liu, Y., Jiao, S., Guo, J., Lu, C., Zhou, Y., et al., 2021. Shifting of the migration route of White-Naped Crane (Antigone vipio) due to wetland loss in China. Remote Sens. 13, 2984.
    Jones, J., 2001. Habitat selection studies in avian ecology: a critical review. Auk 118, 557-562.
    Karanth, K.U., Sunquist, M.E., 1995. Prey selection by tiger, leopard and dhole in tropical forests. J. Anim. Ecol. 64, 439-450.
    Karanth, K.U., Sunquist, M.E., 2000. Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. J. Zool. 250, 255-265.
    Keddy, P.A., Fraser, L.H., Solomeshch, A.I., Junk, W.J., Campbell, D.R., Arroyo, M.T., et al., 2009. Wet and wonderful: the world's largest wetlands are conservation priorities. Bioscience 59, 39-51.
    Kirby, J.S., Stattersfield, A.J., Butchart, S.H., Evans, M.I., Grimmett, R.F., Jones, V.R., et al., 2008. Key conservation issues for migratory land- and waterbird species on the world's major flyways. Bird Conserv. Int. 18, S49-S73.
    Kranstauber, B., Kays, R., LaPoint, S.D., Wikelski, M., Safi, K., 2012. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738-746.
    Kuhn, C.E., Johnson, D.S., Ream, R.R., Gelatt, T.S., 2009. Advances in the tracking of marine species: using GPS locations to evaluate satellite track data and a continuous-time movement model. Mar. Ecol. Prog. Ser. 393, 97-109.
    Lambin, E.F., Turner, B.L., Geist, H.J., Agbola, S.B., Angelsen, A., Bruce, J.W., et al., 2001. The causes of land-use and land-cover change: moving beyond the myths. Global Environ. Chang. 11, 261-269.
    Lei, J., Jia, Y., Zuo, A., Zeng, Q., Shi, L., Zhou, Y., et al., 2019. Bird satellite tracking revealed critical protection gaps in East Asian-Australasian Flyway. Int. J. Environ. Res. Public Health 16, 1147.
    Liu, Q., Tong, Y., 2003. The effects of land use change on the ecoenvironmental evolution of farming-pastoral region in Northern China: with an emphasis on Duolun county in Inner Mongolia. Acta Ecol. Sin. 23, 1025-1030.
    Liu, H., Zhang, S., Li, Z., Lu, X., Yang, Q., 2004. Impacts on wetlands of large-scale land-use changes by agricultural development: the small Sanjiang Plain, China. AMBIO: J. Hum. Environ. 33, 306-310.
    Liu, C., Jiang, H., Zhang, S., Li, C., Hou, Y., Qian, F., 2013. Multi-scale analysis to uncover habitat use of red-crowned cranes: implications for conservation. Curr. Zool. 59, 604-617.
    McMahon, B.F., Evans, R.M., 1992. Nocturnal foraging in the American white pelican. Condor 94, 101-109.
    Meine, C.D., Archibald, G.W., 1996. The Cranes: status survey and conservation action plan. IUCN, Gland, Switzerland, and Cambridge.
    Monsarrat, S., Benhamou, S., Sarrazin, F., Bessa-Gomes, C., Bouten, W., Duriez, O., 2013. How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers? PLoS One 8, e53077.
    Nendel, C., Hu, Y., Lakes, T., 2018. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015 - a case study from Xilingol, China. Land Degrad. Dev. 29, 1595-1606.
    Ogden, L.J.E., Hobson, K.A., Lank, D.B., 2004. Blood isotopic (δ13C and δ15N) turnover and diet-tissue fractionation factors in captive dunlin (Calidris alpina pacifica). Auk 121, 170-177.
    Parnell, A., Jackson, A., 2013. siar: stable isotope analysis in R. R package version 4.2. . (Accessed 30 August 2022).
    Pielke, R.A., 2005. Land use and climate change. Science 310, 1625-1626.
    R Development Core Team., 2017. R: a language and environment for statistical computing and graphics. Foundation for Statistical Computing, Vienna. Available at: .
    Tomkiewicz, S.M., Fuller, M.R., Kie, J.G., Bates, K.K., 2010., Global positioning system and associated technologies in animal behaviour and ecological research. Phil. Trans. R. Soc. B. 365, 2163-2176.
    Wang, C., Liu, H., Li, Y., Dong, B., Qiu, C., Yang, J., et al., 2021a. Study on habitat suitability and environmental variable thresholds of rare waterbirds. Sci. Total Environ. 785, 147316.
    Wang, Y., Damba, I., Zhao, Q., Xie, Y., Deng, X., Ga, R., et al., 2021b. Organising a juvenile ratio monitoring programme for 10 key waterbird species in the Yangtze River floodplain: analysis and proposals. Avian Res. 12, 72.
    Wetland International, 2012. Waterbird Population Estimates, fifth edition. Summary Report. Wetlands International, Wageningen.
    Wu, H.Z., Ruhan, A., Guo, T.B., Sun, Z.Y., 2011. Impacts of land use change on ecosystem services value in Duolun County of Inner Mongolia based on RS and GIS. Sci. Geog. Phisica Sin. 31, 110-116.
    Wu, D., Hu, C., Zhang, M., Li, Z., Su, H., 2020. Foraging habitat selection of overwintering Black-necked Cranes in the farming area surrounding the Caohai Wetland, Guizhou Province, China. Avian Res. 11, 5.
    Xia, S., Yu, X., Millington, S., Liu, Y., Jia, Y., Wang, L., et al., 2017. Identifying priority sites and gaps for the conservation of migratory waterbirds in China's coastal wetlands. Biol. Conserv. 210, 72-82.
    Xiang X., Jin L., Yang Z., Zhang N., Zhang F., 2021. Dramatic shifts in intestinal fungal community between wintering Hooded Crane and Domestic Goose. Avian Res. 12, 1.
    Xu, X., Jiang, J., Lei, Y., Wang, C., Qing, B., Ding, C., 2022. Using stable isotope to compare the habitat use and trophic level between the new and old breeding range of wild Crested Ibis in the early breeding season. Avian Res. 13, 100007.
    Yang, H., Chen, B., Barter, M., Piersma, T., Zhou, C., Li, F., et al., 2011. Impacts of tidal land reclamation in Bohai Bay, China: ongoing losses of critical Yellow Sea waterbird staging and wintering sites. Bird Conserv. Int. 21, 241-259.
    Zhang, D., Zhou, L., Song, Y., 2015. Effect of water level fluctuations on temporal-spatial patterns of foraging activities by the wintering Hooded Crane (Grus monacha). Avian Res. 6, 16.
    Zou, H., Wu, Q., 2006. Feeding habitat of red-crowned crane and white-napped crane during their courtship period in Zhalong wetland. J. Appl. Ecol. 17, 444-449.
    Zou, H., Wu, Q., Niu, M., 2005. Comparing of feeding habitat selection between the wild and semi-domestic White-naped Crane during the pre-breeding period in Zhalong Wetland. Chinese J. Zool. 4, 45-50.
    Zou, H.F., Feng, X.D., Wu, Q.M., Wu, Y.N., Hao, M., Ma, J.Z., 2012. Diet component and preference of white-naped crane during courtship period in Zhalong Nature Reserve. J. Northeast For. Univ. 40, 69-76.
  • Related Articles

Catalog

    Figures(6)  /  Tables(2)

    Article Metrics

    Article views (118) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return