Xueqin Deng, Qingshan Zhao, Junjian Zhang, Andrea Kölzsch, Diana Solovyeva, Inga Bysykatova-Harmey, Zhenggang Xu, Helmut Kruckenberg, Lei Cao, Anthony David Fox. 2021: Contrasting habitat use and conservation status of Chinese-wintering and other Eurasian Greater White-fronted Goose (Anser albifrons) populations. Avian Research, 12(1): 71. DOI: 10.1186/s40657-021-00306-0
Citation: Xueqin Deng, Qingshan Zhao, Junjian Zhang, Andrea Kölzsch, Diana Solovyeva, Inga Bysykatova-Harmey, Zhenggang Xu, Helmut Kruckenberg, Lei Cao, Anthony David Fox. 2021: Contrasting habitat use and conservation status of Chinese-wintering and other Eurasian Greater White-fronted Goose (Anser albifrons) populations. Avian Research, 12(1): 71. DOI: 10.1186/s40657-021-00306-0

Contrasting habitat use and conservation status of Chinese-wintering and other Eurasian Greater White-fronted Goose (Anser albifrons) populations

Funds: 

the National Natural Science Foundation of China 31970433

China Biodiversity Observation Networks Sino BON

the North Sea-Baltic population was funded by the DLR (ICARUS directive) and the Lower Saxony Ministry of Food, Agriculture and Consumer Protection 

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript 

More Information
  • Corresponding author:

    Lei Cao, leicao@rcees.ac.cn

  • Received Date: 27 Feb 2021
  • Accepted Date: 27 Nov 2021
  • Available Online: 24 Apr 2022
  • Publish Date: 08 Dec 2021
  • Background 

    GPS/GSM tracking data were used to contrast use of (i) habitats and (ii) protected areas between three Arctic-nesting Greater White-fronted Geese (Anser albifrons, GWFG) populations throughout the annual cycle. We wished to demonstrate that the East Asian Continental Population (which winters on natural wetlands in the Chinese Yangtze River floodplain and is currently declining) avoids using farmland at multiple wintering sites. We also gathered tracking evidence to support general observations from two increasing population of GWFG, the North Sea-Baltic (which winters in Europe) and the West Pacific (which winter in Korea and Japan) winter mostly within farmland landscapes, using wetlands only for safe night roosts.

    Methods 

    We tracked 156 GWFG throughout their annual cycle using GPS/GSM transmitters from these three populations to determine migration routes and stopover staging patterns. We used Brownian Bridge Movement Models to generate summer, winter and migration stopover home ranges which we then overlaid in GIS with land cover and protected area boundary at national level to determine habitat use and degree of protection from nature conservation designated areas.

    Results 

    Data confirmed that 73% of European wintering GWFG homes ranges were from within farmland, compared to 59% in Japan and Korea, but just 5% in China, confirming the heavy winter use of agricultural landscapes by GWFG away from China, and avoidance of farmland at multiple sites within the Yangtze River floodplain. The same GWFG used farmland in northeast China in spring and autumn, confirming their experience of exploiting such habitats at other stages of their annual cycle. Chinese wintering birds showed the greatest overlap with protected areas of all three populations, showing current levels of site safeguard are failing to protect this population.

    Conclusions 

    Results confirm the need for strategic planning to protect the East Asian Continental GWFG population. While the site protection network in place to protect the species seems adequate, it has failed to stop the declines. Buffalo grazing could serve as one simple strategy to improve the condition of feeding habitats at Dongting Lake and Poyang Lake in the Yangtze, where vast Carex meadows exist. In addition, while we warn against pushing GWFG to winter farmland feeding in China because of the long-term potential to conflict with agricultural interests, we recommend experimental sacrificial, disturbance-free farmland within designated refuge areas adjacent to the Yangtze River floodplain wetland reserves as a manipulative experiment to improve the conservation status of this population in years when natural food sources are limited.

  • The Brown-headed Cowbird (Molothrus ater; Figs. 1 and 2) is the only widespread brood parasite in the United States and Canada. The Bronzed Cowbird (M. aeneus) is restricted to the southern United States (Peer and Sealy, 1999a; Ellison and Lowther, 2009) and the Shiny Cowbird (M. bonariensis) is found in limited numbers in the southeastern United States (Reetz et al., 2010; Post and Sykes, 2011). It was believed that the Shiny Cowbird would rapidly invade and spread into the southeastern states (Cruz et al., 1998; 2000), but their range expansion has stalled for reasons that are unclear. The Bronzed and Shiny Cowbirds are found primarily in the Neotropics and this region also has the remaining two species in the parasitic cowbird clade, the Giant (M. oryzivorus) and Screaming (M. rufoaxillaris) Cowbirds. The latter is one of the most special-ized brood parasites in the world, primarily parasitizing a single species and on occasion four other species (DiGiacomo et al., 2010). In contrast, the Shiny Cowbird (266 hosts), followed closely by the Brown-headed Cowbird (247 hosts; Lowther, 2012), has the largest number of known host species of any brood parasite.

    Figure  1.  A female (left) and male (right) Brown-headed Cowbird (photo by J. Rivers)
    Figure  2.  A Brown-headed Cowbird nestling in a Bell's Vireo nest. This host species typically raises only a cowbird and none of its own young when parasitized (photo by J. Rivers).

    Cowbirds are considered grassland and edge species, but they also search for host nests in forested habitats. Brown-headed Cowbirds (hereafter cowbirds) commute large distances (7–15 km) on a daily basis between breeding and foraging locations (Dufty, 1982; Rothstein et al., 1984; Thompson, 1994; Curson et al., 2000). Their foraging habitat includes grasslands and pastures where they feed on seeds and invertebrates (Ortega, 1998), and they show a distinct preference for foraging in association with livestock which flush insects in these areas (Ortega, 1998). Historically, cowbirds followed and foraged in association with bison (Bison bison) herds (Mayfield, 1965). Their preference of open habitats has also impacted the evolution of host defenses, because all hosts known to eject cowbird eggs mostly nest in grasslands or open areas along edges apparently due to the fact these hosts have had the longest period of time to evolve defenses (Peer and Sealy, 2004).

    The cowbird is a host generalist and usually parasitizes open-cup nesting species and avoids those that nest in cavities (Ortega, 1998; but see Peer et al., 2006; Hoover and Robinson, 2007). Cowbirds use hosts that feed their young insects (Ortega, 1998), but they also parasitize those with diets of seed and fruit despite the fact their young do not survive on such diets (Rothstein, 1976; Middleton, 1991; Kozlovic et al., 1996). Parasitism frequencies vary regionally, within hosts, and seasonally. For example in the fragmented forests of Illinois, parasitism frequencies are often 100% (Robinson, 1992; Fig. 3). Birds nesting at forest edges and in shrublands are parasitized at intermediate frequencies and those nesting in grasslands in the same region are rarely parasitized (Peer et al., 2000). In contrast, in the center of the cowbird's historic range in Kansas where the landscape consists almost wholly of grasslands, grassland species are parasitized at high frequencies (Elliott, 1978; Rivers et al., 2010). Parasitism of some host species, notably the Red-winged Blackbird (Agelaius phoeniceus) and Dickcissel (Spiza americana), also vary geographically (Linz and Bolin, 1982; Jensen and Cully, 1995; Searcy and Yasukawa, 1995) possibly due to alternative host choices within given avian communities (e.g., Barber and Martin, 1997).

    Figure  3.  A Wood Thrush nest parasitized with a single cowbird egg. In parts of its range, 100% of Wood Thrush nests are parasitized by cowbirds (photo by B. Peer).

    Individual female cowbirds sometimes specialize on a particular host species and in other cases use multiple hosts (Alderson et al., 1999; Strausberger and Ashley, 2005), and host usage by individual female cowbirds is an area in need of further research. Estimates of the numbers of eggs laid by individual females in the wild range from 13 to more than 40 (Scott and Ankney, 1983; Fleischer et al., 1987; Alderson et al., 1999; see also Holford and Roby, 1993), but there is some consensus that cowbirds lay eggs on about 70–80% of the days during their breeding season (Fleischer et al., 1987). Multiple parasitism is relatively common in cowbirds (Robinson, 1992; Rivers et al., 2010; Fig. 4) and can result from multiple females parasitizing a nest or indi-vidual females laying multiple eggs within a single nest (Alderson et al., 1999; McLaren et al., 2003; Rivers et al., 2012).

    Figure  4.  A multiply parasitized Dickcissel nest with five host eggs (blue) and four cowbird eggs (white with brown spots) (photo by J. Rivers)

    In comparison to other brood parasite-host systems, cowbirds and their hosts have interacted for a relatively short time; the Molothrus clade is only 2.8–3.8 million years old (Rothstein et al., 2002). Perhaps as a result, the Brown-headed Cowbird lacks some adaptations possessed by other brood parasites (Mermoz and Ornelas, 2004) including mimicry of host eggs (Rothstein and Robinson, 1998; but see Peer et al. 2002), or evidence of specialized nestling adaptations such as directly killing nestmates (Lichtenstein and Sealy, 1998; Peer et al., 2013). Among the adaptations possessed by cowbird are that females have a larger hippocampus to remember where host nests are located (Sherry et al., 2003); laying eggs rapidly and before sunrise to avoid detection by hosts (Scott, 1991; Sealy et al., 1995; see also Peer and Sealy, 1999b); thick eggshells presumably to withstand puncture-ejection by hosts (Picman, 1989); greater pore diameter in their eggshells for increased embryonic respiration and shorter incubation periods (Jaeckle et al., 2012; see also Briskie and Sealy, 1990); removal of host eggs by females in conjunction with parasitism to enhance incubation efficiency (Peer and Bollinger, 1997; 2000) and for nutrition (Sealy, 1992); egg puncture and killing nestlings to force hosts to renest providing additional chances for parasitism (Arcese et al., 1996; Elliott, 1999; Hoover and Robinson, 2007; Dubina and Peer, 2013); and possibly forcing hosts to accept parasitism through mafia enforcement tactics (Hoover and Robinson, 2007).

    Likewise, host defenses against cowbird parasitism appear to be relatively unsophisticated. For example, many hosts aggressively defend their nests against cowbirds, but the success of this strategy in preventing parasitism is limited (Sealy et al., 1998). Only approximately 10% of hosts reject cowbird eggs (Peer and Sealy, 2004; Fig. 5) and there is a bimodal response in that most hosts either accept or reject 100% of the time (Rothstein, 1975; Peer and Sealy, 2004), although more intermediate rejecters have been recently discovered (Peer et al., 2000, 2002, 2006). Smaller hosts are more likely to desert parasitized nests likely due to bill-size constraints that prevent egg ejection or simply because nest desertion evolves more easily than egg ejection (Hosoi and Rothstein, 2000). One host, the Yellow Warbler (Dendroica petchia), is unique because it often buries cowbird eggs in a new nest lining (Sealy, 1995) and it also has a specific referential call for cowbirds (Gill and Sealy, 2004). The lack of adaptive response to parasitism in newly parasitized hosts and some others appears to be due to an evolutionary lag (Rothstein, 1975; Peer and Sealy, 2004). Hosts with small bills that have difficulty in removing the cowbird egg or those with eggs that resemble cowbird eggs and may mistake them for their own may be in an evolutionary equilibrium (e.g., Rohwer and Spaw, 1988), but there is no compelling evidence of equilibrium among cowbird hosts to date (Peer and Sealy, 2004).

    Figure  5.  A Gray Catbird nest parasitized by a cowbird. The catbird is a rejecter species but is still at least occasionally parasitized (photo by B. Peer)

    The Brown-headed Cowbird, and to a lesser extent the Shiny Cowbird, is unique among brood parasites because there are control programs designed to aid endangered species by culling cowbirds. To some extent, these control measures have been implemented based on misconceptions concerning impacts cowbirds have at the level of host populations and on incorrectly assuming that cowbirds rather than anthropogenic habitat destruction are limiting host populations (Rothstein and Peer, 2005). Unfortunately, there is no indication that control measures will cease despite some host populations having surpassed mandated minimum population goals and the expenditure of scarce management funds that could be put to better use (Hammer, 2011, unpubl. report). The management debate is exacerbated by the negative attitudes directed towards cowbirds by both birdwatchers and scientists (Ortega, 1998; see Peer et al., 2013, pers. observ.) that is not as apparent in other brood parasites. For example, an article in a North American journal solicited cowbird recipes (Schram, 1994)! In contrast, there is concern in Europe over the decline of the Common Cuckoo (Douglas et al., 2010). Birdwatchers and even some ornithologists in North America would likely rejoice if such declines occurred in the cowbird. This unfortunate attitude and scapegoating of the cowbird are detrimental to the conservation of endangered songbird species because it diverts attention from more important factors such as the anthropogenic habitat degradation underlying the declines of these species.

  • Abraham K, Jefferies R, Alisauskas R. The dynamics of landscape change and Snow Geese in mid-continent North America. Glob Change Biol. 2005;11: 841–55.
    Aharon-Rotman Y, McEvoy J, Zhaoju Z, Yu H, Wang X, Si Y, et al. Water level affects availability of optimal feeding habitats for threatened migratory waterbirds. Ecol Evol. 2017;7: 10440–50.
    Amano T, Ushiyama K, Fujita G, Higuchi H. Alleviating grazing damage by white-fronted geese: an optimal foraging approach. J Appl Ecol. 2004;41: 675–88.
    Barraquand F, Benhamou S. Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts. Ecology. 2008;89: 3336–48.
    Bullard F. Estimating the homerange of an animal: a Brownian Bridge Approach. USA: University of North Carolina; 1991.
    Bunnefeld N, Börger L, van Moorter B, Rolandsen Christer M, Dettki H, Solberg Erling J, et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J Anim Ecol. 2010;80: 466–76.
    Calenge C. The package "adehabitat" for the R software: A tool for the analysis of space and habitat use by animals. Ecol Model. 2006;197: 516–9.
    Cunningham SA, Zhao Q, Weegman MD. Increased rice flooding during winter explains the recent increase in the Pacific Flyway White-fronted Goose Anser albifrons frontalis population in North America. Ibis. 2020;163: 231–46.
    Deng X, Zhao Q, Fang L, Xu Z, Wang X, He H, et al. Spring migration duration exceeds that of autumn migration in Far East Asian Greater White-fronted Geese (Anser albifrons). Avian Res. 2019;10: 19.
    Deng X, Zhao Q, Solovyeva D, Lee H, Bysykatova-Harmey I, Xu Z, et al. Contrasting trends in two East Asian populations of the Greater White-fronted Goose Anser albifrons. Wildfowl. 2020;6: 181–205.
    Edelhoff H, Signer J, Balkenhol N. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Movement Ecol. 2016;4: 21.
    ESRI. ArcGIS Desktop: Release 10.2. Redlands, CA: Environmental Systems Research Institute. 2013.
    Fan Y, Zhou L, Cheng L, Song Y, Xu W. Foraging behavior of the Greater White-fronted Goose (Anser albifrons) wintering at Shengjin Lake: diet shifts and habitat use. Avian Res. 2020;11: 3.
    Fang J, Wang Z, Zhao S, Li Y, Tang Z, Yu D, et al. Biodiversity changes in the lakes of the Central Yangtze. Front Ecol Environ. 2006;4: 369–77.
    Fox AD, Abraham KF. Why geese benefit from the transition from natural vegetation to agriculture. Ambio. 2017;46: 188–97.
    Fox AD, Madsen J. Threatened species to super-abundance: The unexpected international implications of successful goose conservation. Ambio. 2017;46: 179–87.
    Fox AD, Leafloor JO. A global audit of the status and trends of Arctic and Northern Hemisphere goose populations. Akureyri, Iceland: Conservation of Arctic Flora and Fauna International Secretariat; 2018.
    Fox A, Madsen J, Boyd H, Kuijken E, Norriss D, Tombre I, et al. Effects of agricultural change on abundance, fitness components and distribution of two Arctic-nesting goose populations. Glob Change Biol. 2005;11: 881–93.
    Fox A, Cao L, Zhang Y, Barter M, Zhao M, Meng F, et al. Declines in the tuber-feeding waterbird guild at Shengjin Lake National Nature Reserve, China – a barometer of submerged macrophyte collapse. Aquatic Conserv Mar Freshwater Ecosyst. 2011;21: 82–91.
    Fox AD, Elmberg J, Tombre IM, Hessel R. Agriculture and herbivorous waterfowl: a review of the scientific basis for improved management. Biol Rev. 2017;92: 854–77.
    Gong P, Liu H, Zhang M, Li C, Wang J, Huang H, et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci Bull. 2019;64: 23–6.
    Horne JS, Garton EO, Krone SM, Lewis JS. Analyzing animal movements using Brownian Bridges. Ecology. 2007;88: 2354–63.
    Jia Q, Koyama K, Choi C-Y, Kim H-J, Cao L, Gao D, et al. Population estimates and geographical distributions of swans and geese in East Asia based on counts during the non-breeding season. Bird Conserv Int. 2016;26: 397–417.
    Kim MK, Lee S-I, Lee SD. Habitat use and its implications for the conservation of the overwintering populations of Bean Goose Anser fabalis and Greater White-Fronted Goose A. albifrons in South Korea. Ornithol Sci. 2016;15: 141–9.
    Kölzsch A, Müskens GJDM, Kruckenberg H, Glazov P, Weinzierl R, Nolet BA, et al. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos. 2016;125: 1496–507.
    Lavielle M. Using penalized contrasts for the change-point problem. Signal Process. 2005;85: 1501–10.
    Le Corre M, Dussault C, Côté SD. Detecting changes in the annual movements of terrestrial migratory species: using the first-passage time to document the spring migration of caribou. Movement Ecol. 2014;2: 19.
    Mohr CO. Table of equivalent populations of North American small mammals. Am Midland Nat. 1947;37: 223–49.
    Powell R. Animal home ranges and territories and home range estimators. In: Pearl MC, Boitani L, Fuller TK, editors. Research techniques in animal ecology: controversies and consequences. USA: Columbia University Press; 2000. p. 64–110.
    Shimada T. Daily activity pattern and habitat use of Greater White-fronted Geese wintering in Japan: Factors of the population increase. Waterbirds. 2002;25: 371–7.
    Shimada T, Mizota C. Fluctuation in food resources for, and crop damage by, Greater White-fronted Geese in relation to agriculture in Japan. Japn J Ornithol. 2011;60: 52–62.
    Si Y, Xu Y, Xu F, Li X, Zhang W, Wielstra B, et al. Spring migration patterns, habitat use, and stopover site protection status for two declining waterfowl species wintering in China as revealed by satellite tracking. Ecol Evol. 2018;8: 6280–9.
    Si Y, Wei J, Wu W, Zhang W, Hou L, Yu L, et al. Reducing human pressure on farmland could rescue China's declining wintering geese. Movement Ecol. 2020;8: 35.
    Team RDC. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2017.
    Wang X, Cao L, Bysykatova I, Xu Z, Rozenfeld S, Jeong W, et al. The Far East taiga forest: unrecognized inhospitable terrain for migrating Arctic-nesting waterbirds? Peer J. 2018;6: e4353.
    Xu F, Si Y. The frost wave hypothesis: How the environment drives autumn departure of migratory waterfowl. Ecol Indicat. 2019;101: 1018–25.
    Xu W, Fan X, Ma J, Pimm SL, Kong L, Zeng Y, et al. Hidden loss of wetlands in China. Curr Biol. 2019;29: 3065-71. e2.
    Yu H, Wang X, Cao L, Zhang L, Jia Q, Lee H, et al. Are declining populations of wild geese in China 'prisoners' of their natural habitats? Curr Biol. 2017;27: R376–7.
    Zhang Y, Jia Q, Prins HHT, Cao L, de Boer WF. Individual-area relationship best explains goose species density in wetlands. PLoS ONE. 2015;10: e0124972.
    Zhao M, Cong P, Barter M, Fox AD, Cao L. The changing abundance and distribution of Greater White-fronted Geese Anser albifrons in the Yangtze River floodplain: impacts of recent hydrological changes. Bird Conserv Int. 2012;22: 135–43.
    Zhao Q, Wang X, Cao L, Fox AD. Why Chinese wintering geese hesitate to exploit farmland. Ibis. 2018;160: 703–5.

Catalog

    Figures(5)  /  Tables(2)

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return