Roselvy Juárez, Eduardo Chacón-Madrigal, Luis Sandoval. 2020: Urbanization has opposite effects on the territory size of two passerine birds. Avian Research, 11(1): 11. DOI: 10.1186/s40657-020-00198-6
Citation:
Roselvy Juárez, Eduardo Chacón-Madrigal, Luis Sandoval. 2020: Urbanization has opposite effects on the territory size of two passerine birds. Avian Research, 11(1): 11. DOI: 10.1186/s40657-020-00198-6
Roselvy Juárez, Eduardo Chacón-Madrigal, Luis Sandoval. 2020: Urbanization has opposite effects on the territory size of two passerine birds. Avian Research, 11(1): 11. DOI: 10.1186/s40657-020-00198-6
Citation:
Roselvy Juárez, Eduardo Chacón-Madrigal, Luis Sandoval. 2020: Urbanization has opposite effects on the territory size of two passerine birds. Avian Research, 11(1): 11. DOI: 10.1186/s40657-020-00198-6
Urban expansion has been identified as one of the leading drivers of biodiversity change or loss. For birds, urbanization is specifically related to survival, breeding success, and territory size. Understanding how different birds adjust territory size in response to urbanization is essential for their conservation in urban environments and to better understand why some species are lost and others persist under this condition. We evaluated the effect of urbanization on the territory size of an urban avoider species, White-eared Ground-Sparrow (Melozone leucotis), and an urban adapter species, House Wren (Troglodytes aedon), at five Costa Rican sites.
Methods
We measured the size of 30 ground-sparrow and 28 wren territories using a total of 296 h of observation. We followed each individual for at least 1 h per day for at least 2 days of two consecutive years, and geo-referenced their locations. Territory size was estimated using the minimum convex polygon method. We measured the urban surfaces (roads, buildings, any other paved area, soccer fields, lawns, and gardens with short grass) within territories.
Results
Ground-sparrow territories were larger at the highly urbanized site than at the non-urbanized site. Wren territories were larger at the low urbanized site than at the highly urbanized site. We found a positive relationship between urban surface and territory size for the ground-sparrow, but not for the wren.
Conclusions
Our results showed that not all birds adjust territory size in the same way in response to urbanization. We showed that urban avoiders probably need to defend larger territories in urban environments to find all the resources required to survive because urban environments may provide insufficient resources such as food or shelter. Urban adapters on the other hand defend smaller territories in urban environments because even small territories may provide sufficient resources. These results suggest specific behavioral adaptations developed by Neotropical birds inhabiting urban environments.
In temperate-breeding birds, individuals must be able to adapt to the annual cycle of changing environmental conditions by adjusting morphology, physiology and behavior (Wingfield 2008). Phenotypic flexibility, which means an individual switches its phenotype (e.g. morphological, physiological, and behavioral traits) from one life-history stage to another, is a critical way to maximize ecological fitness (Piersma and Drent 2003; Wingfield 2008).
Alkaline phosphatase (ALP) is an isozyme family in various tissues particularly concentrated in the liver, kidney, bone, and placenta (Iqbal 2011). ALP is a hydrolase enzyme responsible for the dephosphorylation from nucleotides, proteins, alkaloids etc., therefore, it plays critical roles in regulating the metabolism of energy and minerals (Lallès 2014). Previous studies have shown that plasma ALP activity is associated with bone growth and can be a sensitive indicator of skeletal development in various avian species, e.g. Spanish Imperial Eagle (Aquila adalberti) (Dobado-Berrios and Ferrer 1997), Black Vulture (Aegypius monachus) (Villegas et al. 2002), Pigeon Guillemot (Cepphus columba) (Seiser et al. 2000), White Stork (Ciconia ciconia) (Smits et al. 2007), and Great Tit (Parus major) (Tilgar et al. 2004, 2008). Furthermore, evidences have shown that plasma ALP activity is positively correlated with nutritional status, and can vary rapidly in response to the availability of food (Viñuela and Ferrer 1997; Villegas et al. 2002).
Recently, assessment of body condition and nutritional status has become more common in ecological studies as an approach to understanding the individual variations and life history trade-offs (Cam et al. 2016; Crates et al. 2016). In view of plasma ALP activity being considered as a physiological indicator, it may have useful applications in the assessment of the individual variability and physiological state from different life-history stages. The information of life-history dependent relationship between plasma ALP activity and body condition, is critical to understanding how free-living animals fine-tune the trade-off between reproduction and survival so as to optimize their chances of survival during nonbreeding stage, and successful reproduction during breeding stage (Stearns 1989; Cox et al. 2010). However, little information is available on the link between plasma ALP activity and body condition.
The Eurasian Tree Sparrow (Passer montanus) is a seasonally breeding species that is widely distributed across the Eurasian continent. Previous studies have demonstrated that the body mass or body condition of Eurasian Tree Sparrows vary with life-history stage (Li et al. 2008, 2011, 2012; Zheng et al. 2014) and living environment (Zhang et al. 2011; Sun et al. 2016, 2017). Furthermore, male sparrows during the early breeding stage had significantly greater Hct values compared to those from the early wintering stage, whereas there were no significant differences in SCM between the two life-history stages (Zhao et al. 2017). In the present study, we further determined the changes of plasma ALP levels in both the breeding and the wintering stages, and examined the relationships between ALP and SCM, and Hct in the same experimental animals (Zhao et al. 2017).
Methods
Experimental protocol and sample collection
Free-living Eurasian Tree Sparrows (Passer montanus) were captured opportunistically by mist nets in October 24, 2015 (the early wintering stage) and April 28, 2016 (the early breeding stage), on the campus of Hebei Normal University, Hebei Province, China (38°01.83′N, 114°31.50′E, elevation: 75 m). The birds were sexed by polymerase chain reaction following the procedures described in Round et al. (2007) since the Eurasian Tree Sparrow is sexually monomorphic. Subsequent measurements of body condition and plasma ALP activities were performed on male birds only.
Each individual was caged (50 cm × 34 cm × 33 cm) at an ambient temperature of 20 ℃, and provided with food and water ad libitum. Birds sampled in the wintering stage were kept under a stimulated natural photoperiod (10L/14D; n = 27), whereas those sampled in the breeding stage were kept under a stimulated natural photoperiod (14L/10D; n = 26). Birds were acclimated under these conditions for 12-14 days.
After acclimation, approximately 80 μL blood were collected by piercing the alar vein with a 26-gauge needle and collecting blood into heparinized microhematocrit capillary tubes. Blood samples were stored on ice before being centrifuged at 855g for 10 min. Hct was measured as described in Zhao et al. (2017). Fresh plasma was split into several fractions and stores at -80 ℃, and one of fractions was used for ALP assay.
Each bird was weighed to the nearest 0.1 g, and its wing length was measured to the nearest 1 mm. The SCM was calculated and reported in Zhao et al. (2017). After sampling, the birds were used for other experiments. All protocols were approved by the Institutional Animal Care and Use Committee (HEBTU2013-7), and the Ethics and Animal Welfare Committee (No. 2013-6) of Hebei Normal University, China, and were carried out under scientific collecting permits issued by the Departments of Wildlife Conservation (Forestry Bureau) of Hebei Province, China.
Assays of plasma ALP activity
Plasma ALP activities were measured by an automatic biochemical analyzer (Mindray BS-180) with commercially available kits (Mindray Corp., Shenzhen, China) after the plasma was diluted with dH2O (1:39). All samples were run in duplicate. The intra- and inter-assay variations were 6.9 and 9.4%, respectively.
Statistical analyses
We ran Shapiro-Wilk normality test to examine the normal distributions of body mass, SCM, Hct, and ALP activity. All the variables met the normal distribution. The statistical significance of differences in body mass and plasma ALP activity between the breeding and the wintering stages were determined by Welch's t-tests (the data of SCM and Hct have been reported in Zhao et al. 2017). We ran a multiple regression analysis (MRA) using the glm function to obtain optimal models of plasma alkaline phosphatase (ALP) activity against life-history stage and mass, SCM, or Hct and their interactions in Program R v. 3.3.2. (R Core Team 2016). The homogeneity of variances was tested with three outliers removed before conducting statistical tests. All analyses were performed and all figures generated, using car, MASS, and ggplot2 packages in Program R v. 3.3.2. The data are shown as mean ± SD.
Results
Comparison of body mass and ALP activity between the wintering and the breeding stages
There were no significant differences in body mass of male Eurasian Tree Sparrows between the breeding (18.88 ± 0.19 g) and the wintering stages (19.36 ± 0.23 g; t1, 57 = 1.59, p = 0.118), whereas the birds in the breeding stage had significantly lower ALP activities (442.9 ± 9.9 U/L) than those in the wintering stage (593.4 ± 18.0 U/L; t1, 51 = 7.2, p < 0.001).
Correlations between ALP activity and body mass, SCM, or Hct
ALP activity was not correlated with individual body mass in both stages. However, ALP activity was positively correlated with individual SCM and Hct (Table 1). There were significant effects of the interaction 'season × SCM' and 'season × Hct', respectively (Table 1). Specifically, we found a positive relationship between ALP and SCM, or Hct in the wintering, but no significant relationships in the breeding stages (statistical results are shown in Fig. 1).
Table
1.
Statistical results of best fitted regression models of plasma alkaline phosphatase (ALP) activity against life-history stage (stage, dummy variable) and body mass (Mass), size-corrected mass (SCM), or hematocrit (Hct) and their interactions in male Eurasian Tree Sparrows (Passer montanus) from the breeding and the wintering stages
Variable
Model
Standardized β value
SE
t
p
Mass
Intercept
0.658
0.148
4.461
< 0.001
Stage: breeding
‒1.290
0.209
‒6.179
< 0.001
Mass
0.187
0.106
1.774
0.083
SCM
Intercept
0.790
0.136
5.799
< 0.001
Stage: breeding
‒1.456
0.190
‒7.653
< 0.001
SCM
0.534
0.146
3.655
0.001
Stage × SCM
‒0.556
0.194
‒2.868
0.006
Hct
Intercept
0.873
0.140
6.245
< 0.001
Stage: breeding
‒1.587
0.200
‒7.930
< 0.001
Hct
0.540
0.142
3.793
< 0.001
Stage × Hct
‒0.506
0.202
‒2.501
0.016
Italics mean that there is statistical significance in the results, in which significance is set at p = 0.05
Figure
1.
Correlations between plasma alkaline phosphatase (ALP) and size-corrected mass (SCM) (a wintering: df = 22, t = 2.858, p = 0.009; breeding: df = 23, t = -0.281, p = 0.781), and hematocrit (Hct) (b wintering: df = 22, t = 3.036, p = 0.006; breeding: df = 23, t = 0.372, p = 0.713), of male Eurasian Tree Sparrows in the wintering or the breeding stages. Shaded areas are 95% confidence limits
Seasonal differences in body mass and ALP activity
Body mass in birds is often affected by food availability and therefore it can reflect the amount of stored energy (Merila and Wiggins 1997; Cuthill et al. 2000). Loss of body mass is thought to reflect the mobilization of energy stores via protein catabolism during periods of increased energetic expenditure (Bryant 1988; Merila and Wiggins 1997). However, the absence of significant differences in body mass and SCM (reported in Zhao et al. 2017) of male Eurasian Tree Sparrows between the breeding and the wintering stages suggests that the energetic requirements might be constant in the two life-history stages.
The mean ALP activities in male Eurasian Tree Sparrows lay within the previously documented ranges in European Starlings (Sturnus vulgaris) but are higher than the values in Red-winged Blackbirds (Agelaius phoeniceus), Northern Bobwhites (Colinus virginianus, and Common Grackles (Quiscalus quiscula) (Hill and Murray 1987) and Black Vulture (Villegas et al. 2002). We found male Eurasian Tree Sparrows during the breeding stage had significantly decreased ALP activities compared to those in the wintering stage. Our results are in line with previous findings in captive Northern Bobwhites, Red-winged Blackbirds, Common Grackles but European Starlings (Hill and Murray 1987). Given that ALP activity could be affected by food availability or energetic condition, whether such seasonal differences are associated with life-history trade-offs of resources allocation warrants to be further determined.
Life-history dependent relationships between plasma ALP activity and body condition
The plasma ALP activities in male Eurasian Tree Sparrows were positively correlated with SCM and Hct during the wintering stage. Our results are in accordance with a positive relationship between ALP activity and condition index in Black Vulture nestlings (Villegas et al. 2002), and between ALP activity and nutritional status in rats (Martins et al. 1998).
Given that SCM and Hct are defined as the status of metabolic reserves (Newton 1993; Fair et al. 2007) and plasma ALP activity is involved in regulating energetic metabolism (Lallès 2014), the positive relationships between plasma ALP activity and SCM, or Hct may provide reliable evidences for direct link of morphological indices and hematologic parameters. Our results suggest that the plasma ALP activity can be used as an indicator of the physiological state for analyzing phenotypic flexibility and individual variation related to body condition or nutritional status of free-living animals in the wintering stage. Whether individuals with better body condition and higher ALP activities have increased fitness requires further investigation.
However, in the breeding stage, plasma ALP activities of male Eurasian Tree Sparrows were neither correlated with SCM nor Hct. Breeding is considered as an energetically expensive activity that requires high levels of oxygen delivery to active tissues (Williams 1966), which can be reflected by elevated Hct in this period relative to nonbreeding stage, e.g. in male Eurasian Tree Sparrow (Zhao et al. 2017), and White-crowned Sparrow (Zonotrichia leucophrys) (Krause et al. 2016). Compared to the nonbreeding stage, male Eurasian Tree Sparrows in breeding stage require sufficient energy and nutrients to meet the demands of maintaining reproduction-related physiological and behavioral activities, e.g. exhibiting peak T levels, competing for territories, building nests, etc. (García-Navas et al. 2008; Li et al. 2012). In the present study, our results indicate that individuals with greater value of SCM and Hct do not necessarily have higher plasma ALP activities in breeding stage.
Therefore, we found the relationships between plasma ALP activity and SCM, or Hct varied with life-history stage, which is consistent with the relationships between plasma immunological indices and SCM, or Hct in male Eurasian Tree Sparrows (Zhao et al. 2017). Whether such life-history dependent relationships between hematologic parameters and body condition can reflect a strategy of a shift in energy allocation from self-maintenances to reproduction in free-living birds during the breeding stage, i.e. trade-off between individual survival and reproduction, remains to be further investigated.
Conclusions
In summary, male Eurasian Tree Sparrows exhibited elevated plasma ALP activity but lower Hct values during the wintering compared to the breeding stages. The positive correlations between plasma ALP activities and individual SCM or Hct occurred in the wintering but not in the breeding stages, which suggests that plasma ALP activities can be used as one of the indicators of body condition or nutritional status in free-living birds for analyzing individual variation in nonbreeding stage. Such life-history dependent relationships between plasma ALP activity and body condition may contribute to our better understanding of the trade-off between individual survival and reproduction in free-living animals.
Authors' contributions
DML conceived the research project and led the writing, YLZ and LG collected the data, BHZ, XBG, and YFW analyzed the data. All authors read and approved the final manuscript.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 31672292, 31372201), and the Natural Science Foundation of Hebei Province (C2017205059).
Competing interests
The authors declare that they have no competing interests.
Alcock J. Avian mating and social behavior. In: Lovette IJ, Fitzpatrick JW, editors. The Cornell Lab of Ornithology Handbook of bird biology. Hoboken: Wiley Press; 2016. p. 313–53.
Beissinger SR, Tygielski S, Elderd B. Social constraints on the onset of incubation in a neotropical parrot: a nestbox addition experiment. Anim Behav. 1998;55:21–32.
Biamonte E, Sandoval L, Chacón E, Barrantes G. Effect of urbanization on the avifauna in a tropical metropolitan area. Landsc Ecol. 2011;26:183–94.
Boggie MA, Mannan RW. Examining seasonal patterns of space use to gauge how an accipiter responds to urbanization. Landsc Urban Plan. 2014;124:34–42.
Blair RB. Land use and avian species diversity along an urban gradient. Ecol Appl. 1996;6:506–19.
Brown JL. Social organization and behavior of the Mexican Jay. Condor. 1963;65:126–53.
Brown JL. Territorial behavior and population regulation in birds: a review and re-evaluation. Wilson Bull. 1969;81:293–329.
Butchart SH, Seddon N, Ekstrom JM. Polyandry and competition for territories in bronze-winged jacanas. J Anim Ecol. 1999;68:928–39.
Carpenter FL, Paton DC, Hixon MA. Weight gain and adjustment of feeding territory size in migrant hummingbirds. Proc Natl Acad Sci. 1983;80:7259–63.
Calenge C. The package "adehabitat" for the R software: a tool for the analysis of space and habitat use by animals. Ecol modell. 2006;197:516–9.
Duca C, Marini MÂ. Territorial system and adult dispersal in a cooperative-breeding tanager. Auk. 2014;131:32–40.
Dunn PO. Do male birds adjust territory size to the risk of cuckoldry? Anim Behav. 1992;43:857–9.
Eberhard JR, Ewald PW. Food availability, intrusion pressure and territory size: an experimental study of Anna's hummingbirds (Calypte anna). Behav Ecol Sociobiol. 1994;34:11–8.
Emlen JT. An urban bird community in Tucson, Arizona: derivation, structure, regulation. Condor. 1974;76:184–97.
Finck P. Seasonal variation of territory size with the little owl (Athene noctua). Oecologia. 1990;83:68–75.
Freed LA. Territory takeover and sexually selected infanticide in tropical house wrens. Behav Ecol Sociobiol. 1986;19:197–206.
Frixione MG, Casaux R, Villanueva C, Alarcón PA. A recently established Kelp Gull colony in a freshwater environment supported by an inland refuse dump in Patagonia. Emu. 2012;112:174–8.
Greggor AL, Clayton NS, Fulford AJ, Thornton A. Street smart: faster approach towards litter in urban areas by highly neophobic corvids and less fearful birds. Anim Behav. 2016;117:123–33.
Halkin SL, Linville SU. Northern Cardinal Cardinalis cardinalis. In: Poole AF, Gill FB, editors. Birds of North America, version 2.0. Ithaca: Cornell Lab of Ornithology; 1999. .
Hejl SJ, Holmes JA, Kroodsma DE. Winter Wren Troglodytes hiemalis. In: Poole AF, Gill FB, editors. Birds of North America, version 2.0. Ithaca: Cornell Lab of Ornithology; 2002. .
Hixon MA, Carpenter FL, Paton DC. Territory area, flower density, and time budgeting in hummingbirds: an experimental and theoretical analysis. Am Nat. 1983;122:366–91.
Holland AE, Byrne ME, Bryan AL, DeVault TL, Rhodes OE, Beasley JC. Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps atratus) and turkey vultures (Cathartes aura). PLoS ONE. 2017;12:e0179819.
Howell SNG, Webb S. A guide to the birds of Mexico and northern Central America. New York: Oxford University Press; 1995.
Johnson LS. House Wren Troglodytes aedon. In: Poole AF, editor. Birds of North America, version 2.0. Ithaca: Cornell Lab of Ornithology; 2014. .
Kattan GH. Heterospecific infanticidal behavior by Southern House Wrens (Troglodytes aedon musculus) suggests nest site competition. Wilson J Ornithol. 2016;128:899–903.
Kattan GH, Beltran JW. Rarity in antpittas: territory size and population density of five Grallaria spp in a regenerating habitat mosaic in the Andes of Colombia. Bird Conserv Int. 2002;12:231–40.
Kermott LH, Johnson LS, Merkle MS. Experimental evidence for the function of mate replacement and infanticide by males in a north-temperate population of House Wrens. Condor. 1991;93:630–6.
Kraaijeveld K, Dickinson JL. Family-based winter territoriality in western bluebirds, Sialia mexicana: the structure and dynamics of winter groups. Anim Behav. 2001;61:109–17.
Kroodsma DE, Verner J. Marsh Wren Cistothorus palustris. In: Poole AF, editor. Birds of North America, version 2.0. Ithaca: Cornell Lab of Ornithology; 2013. .
Lowry H, Lill A, Wong B. Behavioural responses of wildlife to urban environments. Biol Rev. 2013;88:537–49.
MacDougall-Shackleton EA, Robertson RJ. Mate guarding tactics used by great crested flycatchers. Wilson Bull. 1995;107:757–61.
Marshall MR, Cooper RJ. Territory size of a migratory songbird in response to caterpillar density and foliage structure. Ecology. 2004;85:432–45.
Marzluff JM, Rodewald A. Conserving biodiversity in urbanizing areas: nontraditional views from a bird's perspective. Cit Environ. 2008;1:1–27.
Marzluff JM, DeLap JH, Oleyar MD, Whittaker KA, Gardner B. Breeding dispersal by birds in a dynamic urban ecosystem. PLoS ONE. 2016;11:e0167829.
McGowan KJ. Demographic and behavioral comparisons of suburban and rural American Crows. In: Marzluff JM, Bowman R, Donelly R, editors. Avian ecology and conservation in an urbanizing world. Norwell: Kluwer Academic Press; 2001. p. 365–81.
Mennechez G, Clergeau P. Effect of urbanisation on habitat generalists: starlings not so flexible? Acta Oecol. 2006;30:182–91.
Mills GS, Dunning JB, Bates JM Jr. Effects of urbanization on breeding bird community structure in southwestern desert habitats. Condor. 1989;91:416–28.
Møller AP. Changes in the size of avian breeding territories in relation to the nesting cycle. Anim Behav. 1990;40:1070–9.
Møller AP. Relative size of avian breeding territories and the risk of cuckoldry. Anim Behav. 1992;43:860–1.
Nice MM. The role of territory in bird life. Am Midl Nat. 1941;26:441–87.
Nishida K, Nakamura I, Morales C. Plants and butterflies of a small urban preserve in the Central Valley of Costa Rica. Rev Biol Trop. 2009;57:31–67.
Osborne DR, Bourne GR. Breeding behavior and food habits of the Wattled Jacana. Condor. 1977;79:98–105.
Price TD. Sexual selection on body size, territory and plumage variables in a population of Darwin's finches. Evolution. 1984;38:327–41.
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. .
Ruiz-Sánchez A, Renton K, Rueda-Hernández R. Winter habitat disturbance influences density and territory size of a Neotropical migratory warbler. J Ornithol. 2017;158:63–73.
Salomonson MG, Balda RP. Winter territoriality of Townsend's Solitaires (Myadestes townsendi) in a pinon-juniper-ponderosa pine ecotone. Condor. 1977;79:148–61.
Sandoval L, Mennill DJ. Breeding biology of White-eared Ground-sparrow (Melozone leucotis), with a description of a new nest type. Ornitol Neotrop. 2012;23:225–34.
Sandoval L, Dabelsteen T, Mennill DJ. Transmission characteristics of solo songs and duets in a neotropical thicket habitat specialist bird. Bioacoustics. 2015;24:289–306.
Sandoval L, Méndez C, Mennill DJ. Vocal behaviour of White-eared Ground-sparrows (Melozone leucotis) during the breeding season: repertoires, diel variation, behavioural contexts, and individual distinctiveness. J Ornithol. 2016;157:1–12.
Sandoval L, Morales CO, Ramírez-Fernández JD, Hanson P, Murillo-Hiller R, Barrantes G. The forgotten habitats in conservation: early successional vegetation. Rev Biol Trop. 2019;67:S36–52.
Skutch AF. Life history of the southern house wren. Condor. 1953;55:121–49.
Smith TM, Shugart HH. Territory size variation in the ovenbird: the role of habitat structure. Ecology. 1987;68:695–704.
Stiles FG, Skutch AF. A guide to the birds of Costa Rica. Ithaca: Cornell University Press; 1989.
Tinbergen N. The function of sexual fighting in birds; and the problem of the origin of "territory". Bird Band. 1936;7:1–8.
Vignoli L, Scirè S, Bologna MA. Rural–urban gradient and land use in a millenary metropolis: how urbanization affects avian functional groups and the role of old villas in bird assemblage patterning. Web Ecol. 2013;13:49–67.
Warren PS, Katti M, Ermann M, Brazel A. Urban bioacoustics: it's not just noise. Anim Behav. 2006;71:491–502.
Weaving MJ, White JG, Hower K, Isaac B, Cooke R. Sex-biased space-use response to urbanization in an endemic urban adapter. Landsc Urban Plan. 2014;130:73–80.
Williams HM, Willemoes M, Klaassen RH, Strandberg R, Thorup K. Common Cuckoo home ranges are larger in the breeding season than in the non-breeding season and in regions of sparse forest cover. J Ornithol. 2016;157:461–9.
Woltmann S, Terrill RS, Miller MJ, Brady ML. Chestnut-backed Antbird Poliocrania exsul. In: Schulenberg TS, editor. Neotropical Birds Online, version 1.0. Ithaca: Cornell Lab of Ornithology; 2010. .
Woltmann S, Sherry TW. High apparent annual survival and stable territory dynamics of Chestnut-backed Antbird (Myrmeciza exsul) in a large Costa Rican rain forest preserve. Wilson J Ornithol. 2011;123:15–23.
Mo Li, Ghulam Nabi, Yanfeng Sun, et al. The effect of air pollution on immunological, antioxidative and hematological parameters, and body condition of Eurasian tree sparrows. Ecotoxicology and Environmental Safety, 2021, 208: 111755.
DOI:10.1016/j.ecoenv.2020.111755
Mo Li, Qian Zhang, Xiaohan Gao, et al. A case report of bill color aberration in a free-living Eurasian Tree Sparrow (Passer montanus): Morphological and physiological description. The Wilson Journal of Ornithology, 2019, 131(3): 553.
DOI:10.1676/18-165
4.
Mo Li, Weiwei Zhu, Yang Wang, et al. Effects of capture and captivity on plasma corticosterone and metabolite levels in breeding Eurasian Tree Sparrows. Avian Research, 2019, 10(1)
DOI:10.1186/s40657-019-0155-8
Table
1.
Statistical results of best fitted regression models of plasma alkaline phosphatase (ALP) activity against life-history stage (stage, dummy variable) and body mass (Mass), size-corrected mass (SCM), or hematocrit (Hct) and their interactions in male Eurasian Tree Sparrows (Passer montanus) from the breeding and the wintering stages
Variable
Model
Standardized β value
SE
t
p
Mass
Intercept
0.658
0.148
4.461
< 0.001
Stage: breeding
‒1.290
0.209
‒6.179
< 0.001
Mass
0.187
0.106
1.774
0.083
SCM
Intercept
0.790
0.136
5.799
< 0.001
Stage: breeding
‒1.456
0.190
‒7.653
< 0.001
SCM
0.534
0.146
3.655
0.001
Stage × SCM
‒0.556
0.194
‒2.868
0.006
Hct
Intercept
0.873
0.140
6.245
< 0.001
Stage: breeding
‒1.587
0.200
‒7.930
< 0.001
Hct
0.540
0.142
3.793
< 0.001
Stage × Hct
‒0.506
0.202
‒2.501
0.016
Italics mean that there is statistical significance in the results, in which significance is set at p = 0.05