Sylvia Margarita de la Parra‑Martínez, Luis Guillermo Muñoz‑Lacy, Alejandro Salinas-Melgoza, Katherine Renton. 2019: Optimal diet strategy of a large-bodied psittacine: food resource abundance and nutritional content enable facultative dietary specialization by the Military Macaw. Avian Research, 10(1): 38. DOI: 10.1186/s40657-019-0177-2
Citation: Sylvia Margarita de la Parra‑Martínez, Luis Guillermo Muñoz‑Lacy, Alejandro Salinas-Melgoza, Katherine Renton. 2019: Optimal diet strategy of a large-bodied psittacine: food resource abundance and nutritional content enable facultative dietary specialization by the Military Macaw. Avian Research, 10(1): 38. DOI: 10.1186/s40657-019-0177-2

Optimal diet strategy of a large-bodied psittacine: food resource abundance and nutritional content enable facultative dietary specialization by the Military Macaw

More Information
  • Corresponding author:

    Katherine Renton, krenton@ib.unam.mx

  • Received Date: 03 Jul 2018
  • Accepted Date: 16 Sep 2019
  • Available Online: 24 Apr 2022
  • Publish Date: 13 Oct 2019
  • Background 

    Dietary specialization should arise when there is a relatively high abundance of a particular resource, where animals may select food items to obtain an optimal diet that maximizes energy intake. Large-bodied psittacines frequently exhibit a narrow dietary niche with specific habitat use, but few studies have determined whether psittacines select food resources, and how this influences habitat use.

    Methods 

    We established fruiting phenology transects to evaluate food resource availability for the large-bodied Military Macaw (Ara militaris) in semi-deciduous, deciduous, and pine-oak forest at two sites along the coast of Jalisco, during the dry season when macaws are nesting. We also determined Military Macaw diet by observations of foraging macaws along transect routes, and conducted bromatological analysis of the nutritional content of the most consumed resource.

    Results 

    Military Macaws used six plant species as food items during the dry season, and had a narrow dietary niche (Levins' B = 0.28), with 56% of foraging macaws consuming the seeds of Hura polyandra. No food resources were recorded in pine-oak forest during the dry season, with food resources and foraging by macaws concentrated in tropical deciduous and semi-deciduous forest, where H. polyandra was the most abundant fruiting tree species. When considering the proportional availability of food resources, we determined a broad Hurlbert dietary niche breadth of H = 0.67, indicating that Military Macaws consumed food resources according to their availability. Furthermore, the seeds of H. polyandra were an important source of protein, carbohydrates, minerals and moisture, and the hard fruit-casing means that these seeds are exclusively available for macaws.

    Conclusions 

    By concentrating their diet on the most abundant resources, Military Macaws may increase foraging efficiency in the dry season. The high nutrient content also means that concentrating the diet on seeds of H. polyandra may be an optimal foraging strategy for Military Macaws to meet their energy requirements during the breeding season.

  • Global biodiversity is facing increasing threats due to climate change and anthropogenic impacts (Myers et al., 2000; Grenyer et al., 2006). Identification of important species, under risk of extinction, would be of great help to biologists in a more efficient allocation of limited funds to improve and conserve biological diversity by focusing on these unique species (Grenyer et al., 2006). A common practice to identify conservation values of species is to evaluate the rarity of the population of a species, its distribution ranges (He, 2012) and changes in habitat conditions as is practised in the IUCN Red List (The World Conservation Union, 2010). In recent years, the importance of evolutionary history has become recognized (Cadotte and Davies, 2010; Martyn et al., 2012) and many phylogenetic diversity (PD) indices for quantifying evolutionary heritage of species have been proposed in a number of studies (Faith, 1992, 2002; Faith et al., 2004; Tucker et al., 2012).

    The avifauna of China is composed of around 1314 species of which 52 are said to be endemic (only found within the political boundaries of China, i.e., the mainland and Taiwan) (Lei and Lu, 2006). Conservation priorities of these endemic and other bird species in China have been widely established in previous studies (Lei et al., 2002a, 2007; Chen, 2007, 2008; Chang et al., 2013). However, the importance of conservation of endemic birds of China from a phylogenetic perspective has never been evaluated up till now. As such, the present report presents a way to fill such a knowledge gap by proposing conservation priority of endemic birds of China using a series of phylogenetic diversity metrics.

    The list of endemic birds of mainland China was obtained from various earlier studies (Lei and Lu, 2006; Lei et al., 2002a, 2007) and the World Bird Database (http://avibase.bsc-eoc.org/). Table 1 presents a list of species for the present study.

    Table  1.  Conservation priorities of species based on alternative phylogenetic diversity metrics. IUCN categories: EN (endangered), VU (vulnerable), NT (near threatened), LC (least concerned), DD (data deficient). "-" denotes the IUCN information is not available. Codes for phylogenetic diversity metrics: ES (equal split), FP (fair proportions), ED (evolutionary distinctiveness), TD (taxonomic distinctiveness), PL (pendant edge's length) and Node-based I and W indices.
    Species ES FP ED TD PL I W Combined IUCN
    Arborophila ardens 1.000 1.000 1.000 0.571 0.872 0.143 1.000 5.586 VU
    Arborophila gingica 1.000 1.000 1.000 0.571 0.872 0.143 1.000 5.586 NT
    Arborophila rufipectus 1.000 1.000 1.000 0.388 1.000 0.143 1.000 5.531 EN
    Lophophorus lhuysii 0.832 0.835 0.835 0.793 0.918 0.500 0.286 4.999 VU
    Alectoris magna 0.980 0.970 0.970 0.434 0.739 0.286 0.500 4.879 LC
    Tragopan caboti 0.925 0.913 0.913 0.603 0.739 0.429 0.333 4.855 VU
    Caprimulgus centralasicus 0.907 0.883 0.883 0.596 0.826 0.357 0.400 4.852 DD
    Syrmaticus ellioti 0.742 0.738 0.738 0.806 1.000 0.571 0.250 4.845 NT
    Syrmaticus reevesii 0.742 0.738 0.738 0.806 1.000 0.571 0.250 4.845 VU
    Tetraophasis obscurus 0.832 0.835 0.835 0.793 0.670 0.500 0.286 4.751 LC
    Certhia tianquanensis 0.782 0.786 0.786 0.788 0.712 0.643 0.222 4.719 NT
    Phoenicurus alaschanicus 0.829 0.820 0.820 0.597 0.735 0.571 0.250 4.622 NT
    Garrulax davidi 0.596 0.600 0.600 1.000 0.679 1.000 0.143 4.618 LC
    Babax koslowi 0.596 0.600 0.600 1.000 0.679 1.000 0.143 4.618 NT
    Sitta yunnanensis 0.782 0.786 0.786 0.788 0.58 0.643 0.222 4.587 NT
    Garrulax bieti 0.678 0.662 0.662 0.81 0.639 0.929 0.154 4.534 VU
    Chrysomma poecilotis 0.632 0.619 0.619 0.905 0.643 0.929 0.154 4.501 LC
    Leucosticte sillemi 0.640 0.604 0.604 0.927 0.735 0.786 0.182 4.478 DD
    Aegithalos fuliginosus 0.733 0.730 0.730 0.728 0.639 0.714 0.200 4.474 LC
    Perisoreus internigrans 0.655 0.662 0.662 0.734 0.968 0.500 0.286 4.467 VU
    Strix davidi 0.907 0.883 0.883 0.596 0.434 0.357 0.400 4.460 -
    Paradoxornis paradoxus 0.634 0.618 0.618 0.873 0.580 0.929 0.154 4.406 LC
    Paradoxornis conspicillatus 0.634 0.618 0.618 0.873 0.580 0.929 0.154 4.406 LC
    Paradoxornis przewalskii 0.634 0.618 0.618 0.873 0.575 0.929 0.154 4.401 VU
    Paradoxornis zappeyi 0.634 0.618 0.618 0.873 0.575 0.929 0.154 4.401 VU
    Podoces biddulphi 0.655 0.662 0.662 0.734 0.895 0.500 0.286 4.394 NT
    Garrulax elliotii 0.678 0.662 0.662 0.715 0.639 0.857 0.167 4.380 LC
    Rhopophilus pekinensis 0.632 0.619 0.619 0.905 0.514 0.929 0.154 4.372 LC
    Garrulax sukatschewi 0.678 0.662 0.662 0.683 0.639 0.857 0.167 4.348 VU
    Leptopoecile elegans 0.733 0.730 0.730 0.728 0.498 0.714 0.200 4.333 LC
    Carpodacus roborowskii 0.640 0.604 0.604 0.737 0.803 0.714 0.200 4.302 LC
    Urocynchramus pylzowi 0.840 0.833 0.833 0.534 0.434 0.571 0.250 4.295 LC
    Carpodacus eos 0.640 0.604 0.604 0.927 0.506 0.786 0.182 4.249 LC
    Alcippe variegaticeps 0.751 0.726 0.726 0.534 0.580 0.714 0.200 4.231 VU
    Alcippe striaticollis 0.632 0.619 0.619 0.715 0.575 0.857 0.167 4.184 LC
    Phylloscopus hainanus 0.605 0.622 0.622 0.855 0.505 0.786 0.182 4.177 VU
    Phylloscopus kansuensis 0.713 0.692 0.692 0.665 0.498 0.714 0.200 4.174 LC
    Phylloscopus emeiensis 0.605 0.622 0.622 0.855 0.450 0.786 0.182 4.122 LC
    Bonasa sewerzowi 0.936 0.926 0.926 0.540 0.016 0.429 0.333 4.106 NT
    Garrulax lunulatus 0.556 0.560 0.560 0.905 0.434 0.929 0.154 4.098 LC
    Garrulax maximus 0.556 0.560 0.560 0.905 0.434 0.929 0.154 4.098 LC
    Oriolus mellianus 0.788 0.741 0.741 0.544 0.522 0.429 0.333 4.098 VU
    Parus davidi 0.565 0.593 0.593 0.761 0.680 0.643 0.222 4.057 LC
    Emberiza koslowi 0.604 0.601 0.601 0.800 0.506 0.714 0.200 4.026 NT
    Latoucheornis siemsseni 0.604 0.601 0.601 0.800 0.506 0.714 0.200 4.026 LC
    Liocichla omeiensis 0.716 0.665 0.665 0.534 0.514 0.714 0.200 4.008 VU
    Parus superciliosus 0.565 0.593 0.593 0.761 0.522 0.643 0.222 3.899 LC
    Chrysolophus pictus 0.761 0.741 0.741 0.743 0.016 0.571 0.250 3.823 LC
    Parus venustulus 0.679 0.620 0.620 0.571 0.450 0.571 0.250 3.761 LC
    Crossoptilon auritum 0.388 0.414 0.414 0.933 0.632 0.643 0.222 3.646 LC
    Crossoptilon mantchuricum 0.388 0.414 0.414 0.933 0.632 0.643 0.222 3.646 VU
     | Show Table
    DownLoad: CSV

    The phylogenetic relationships between the 52 endemic birds of China's mainland are extracted from the BirdTree.org database (http://www.birdtree.org), which is derived from a full phylogeny of the global bird species in a previous study (Jetz et al., 2012). However one species, Ficedula beijingnic, was omitted from the tree files of the database. It was therefore decided to exclude this species for further analyses, while the remaining 51 species were used for analysis since these are all included in the retrieved phylogenetic trees. From the 3000 trees tested for possible phylogenetic affinities, the 51 endemic birds were retrieved and the resultant consensus tree, with average branch lengths, was obtained using the DendroPy python library (Sukumaran and Holder, 2010). Molecular dating of the tree was carried out using a penalized likelihood method (Sanderson, 2002). The result, a dated tree (Fig. 1), is used for all subsequent analyses.

    Figure  1.  Consensus phylogenetic tree for 51 endemic birds of mainland China

    The following phylogenetic diversity indices are considered to offer a combined rank of conservation priority for endemic birds of China: node-based I and W indices (Posadas et al., 2001, 2004), an evolutionary distinctiveness index (ED) (Redding and Mooers, 2006; Redding et al., 2008), a taxonomic distinctiveness index (TD) (Cadotte and Davies, 2010), pendant lengths (PL) (Altschul and Lipman, 1990), equal splits (ES) (Redding and Mooers, 2006) and fair proportions (FP) (Isaac et al., 2007). All values for each index were then subjected to standardization in order to make a final combined ranking of these species.

    As a comparison, the category of the IUCN Red list for each species was collected from BirdLife International (http://www.birdlife.org/) and included in Table 1. The abbreviations for each category are as follows: EN (endangered), VU (vulnerable), NT (near threatened), LC (least concerned) and DD (data deficient). When comparing the rankings of IUCN and PD indices, the IUCN categories are transformed into discrete integers, i.e., EN (1), VU (2), NT (3), LC (4) and DD (5). The Wilcox signed rank test and Pearson's correlation test were implemented to compare both rankings. A significant Wilcox signed rank or a non-significant Pearson's correlation coefficient implies that both rankings are fundamentally different.

    As shown in Table 1, the top five endemic birds based on the combined rankings of seven PD indices in order of priority, are Arborophila ardens, A. gingica, A. rufipectus, Lophophorus lhuysii and Alectoris magna. Their corresponding IUCN classes are VU, NT, EN, VU and LC, respectively. As seen, the PD-based ranking accurately identified the conservation importance of Arborophila rufipectus, an endangered species that should have a high priority for conservation.

    Arborophila rufipectus has a very limited range of distribution in the southern part of Sichuan Province. The size of its adult population is estimated to be around 1000 (BirdLife International, http://www.birdlife.org/). Due to continuous hunting and habitat loss, it was classified as Critically Endangered in previous IUCN reports(1994, 1998). It is now still listed in the category of Endangered species. Based on a phylogenetic perspective this species, along with two other Arborophila species, has a very unique and long evolutionary history, when compared to other endemic birds (Fig. 1).

    The PD-ranking for Arborophila ardens and Lophophorus lhuysii are also fairly accurate (top-1 and 4), both of which are listed as VU in the IUCN Red List (The World Conservation Union, 2010). This implies that both should deserve high conservation priority from an ecological perspective (based on IUCN ranking) as well as from an evolutionary (based on PD ranking) perspective.

    In contrast, there are some inconsistencies between PD and IUCN rankings. For example, Arborophila gingica and Alectoris magna are ranked 2nd and 5th in the PD ranking for their unique evolutionary histories. However, in the IUCN ranking, these species are merely grouped into the categories of NT and LC.

    Overall, the difference of rankings based on the IUCN Red List and the combined PD ranking is statistically significant (Wilcox signed rank test: V = 159, p < 0.001; Pearson's correlation coefficient: r = 0.217, p = 0.129). These tests show a significant difference between IUCN and PD rankings for endemic birds of mainland China.

    Conservation importance of endemic or rare species has been widely recognized (Linder, 1995; Lamoreux et al., 2006; Gaston, 2012). In the present study, I quantified the conservation importance of avian species, endemic to China, by utilizing a variety of phylogenetic diversity metrics. The results show a statistically significant difference between the priority rankings based on PD metrics and that derived from the IUCN Red list. Therefore, a PD-based conservation emphasis on endemic birds of China might offer some new views when establishing relevant conservation strategies by considering evolutionary heritage and genetic resources of these species.

    The present study carried out analyses on 51 endemic birds. However, it might be a bit ambiguous given the number of endemic birds in China (Zhang, 2004), when one considers migration during the breeding season (Lei et al., 2002b). In a previous study, the number of endemic birds in China was believed to be around 100 (Lei et al., 2002a), while in a more recent publication, this number is said to be 105 (Lei and Lu, 2006). If the definition of endemic birds were extended to include, for example, Taiwan and Hong Kong, the number of endemic birds should be at least 70 (Zhang, 2004; Lei et al., 2002b). When considering only mainland China, the number of endemic birds should be at least 50, based on the information from the World Bird Database (http://avibase.bsc-eoc.org/). Therefore, the present study should be relatively accurate in suggesting conservation priorities for endemic birds in mainland China based on the phylogenetic diversity framework. Any re-analyses with the addition of a few more possible endemic birds should not greatly affect the quantitative results presented in the present study.

    In this study, I have only used pure phylogeny-based diversity indices without considering other weighted phylogenetic diversity indices. Weighted phylogenetic diversity metrics such as the abundance-weighted PD index (Cadotte et al., 2010), the biogeography-weighted PD index (Tucker et al., 2012), the endemism-weighted PD index (Rosauer et al., 2009) and possibly other indices might provide more insights into conservation priorities because these can explicitly incorporate the role of some biological factors when studying the evolutionary history of species. For future implications, integration of other weighted phylogenetic diversity indices into the systematic conservation planning of birds would offer new insights and thus should be considered in the next levels of research.

    This work was supported by the University of British Columbia and now supported by China Scholarship Council.

  • Abdulkadir MN, Isiaka AA, Adeniyi OA. Chemical composition of Hura crepitans seeds and antimicrobial activities of its oil. Int J Sci Res (Ahmedabad). 2013;2:440-5.
    Bennett PM, Owens IPF. Variation in extinction risk among birds: chance or evolutionary predisposition? Proc R Soc Lond B. 1997;264:401-8.
    Berg KS, Socola J, Angel RR. Great Green Macaws and the annual cycle of their food plants in Ecuador. J Field Ornithol. 2007;78:1-10.
    Block WM, Brennan LA. The habitat concept in ornithology: theory and applications. Curr Ornithol. 1993;11:35-91.
    Bonadie WA, Bacon PR. Year-round utilisation of fragmented palm swamp forest by Red-bellied Macaws (Ara manilata) and Orange-winged parrots (Amazona amazonica) in the Nariva Swamp (Trinidad). Biol Conserv. 2000;95:1-5.
    Botero-Delgadillo E, Verhelst JC, Paéz CA. Ecología de forrajeo del periquito de Santa Marta (Pyrrhurra viridicata) en la Cuchilla de San Lorenzo, Sierra Nevada de Santa Marta. Ornitol Neotrop. 2010;21:463-77.
    Boyes RS, Perrin RM. The feeding ecology of Meyer's Parrot Poicephalus meyeri in the Okavango Delta Botswana. Ostrich. 2009a;80:153-64.
    Boyes RS, Perrin RM. Generalists, specialists and opportunists: niche metrics of Poicephalus parrots in southern Africa. Ostrich. 2009b;80:93-7.
    Bullock SH, Solís-Magallanes J. Phenology of canopy trees of a tropical deciduous forest in Mexico. Biotropica. 1990;22:22-35.
    Byers CR, Steinhorst RK, Krausman PR. Clarification of a technique for analysis of utilization-availability data. J Wildl Manage. 1984;48:1050-3.
    Carreón-Arroyo G. Estimación poblacional, biología reproductiva y ecología de la nidificación de la Guacamaya Verde (Ara militaris) en una selva estacional del oeste del estado de Jalisco. B.Sc. Thesis. Mexico City: Facultad de Ciencias, Universidad Nacional Autónoma de México; 1997.
    Charnov EL. Optimal foraging, the marginal value theorem. Theor Popul Biol. 1976;9:129-36.
    Chapman CA, Wrangham R, Chapman LJ. Indices of habitat-wide fruit abundance in tropical forests. Biotropica. 1994;26:160-71.
    Colwell RK, Futuyma DJ. On the measurement of niche breadth and overlap. Ecology. 1971;52:567-76.
    Contreras-González AM, Rivera-Ortíz FA, Soberanes-González C, Valiente-Banuet A, Arizmendi MC. Feeding ecology of Military Macaws (Ara militaris) in a semi-arid region of Central Mexico. Wilson J Ornithol. 2009;121:384-91.
    Crowley GM, Garnett ST. Food value and tree selection by Glossy Black-Cockatoos Calyptorhynchus lathami. Austral Ecol. 2001;26:116-26.
    Cunniff P. Official methods of analysis of AOAC International. 16th ed. Arlington: AOAC International; 1995.
    De Jong B, Anaya C, Masera O, Olguín M, Paz F, Etchevers J, et al. Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. Forest Ecol Manag. 2010;260:1689-701.
    de la Parra-Martínez SM, Renton K, Salinas-Melgoza A, Muñoz-Lacy LG. Tree-cavity availability and selection by a large-bodied secondary cavity-nester: the Military Macaw. J Ornithol. 2015;156:489-98.
    Forshaw JM. Parrots of the world. 3rd ed. Willoughby: Landsdown Editions; 1989.
    Galetti M. Diet of the Scaly-headed Parrot (Pionus maximiliani) in a semi-deciduous forest in southeastern Brazil. Biotropica. 1993;25:419-25.
    Galetti M. Seasonal abundance and feeding ecology of parrots and parakeets in a lowland Atlantic forest of Brazil. Ararajuba. 1997;5:115-26.
    García-Oliva F, Ezcurra E, Galicia L. Pattern of rainfall distribution in the central Pacific coast of Mexico. Geogr Ann A. 1991;73:179-86.
    Gilardi JD. Ecology of parrots in the Peruvian Amazon: habitat use, nutrition and geophagy. Ph.D Thesis. Davis: University of California; 1996.
    Gilardi JD, Toft CA. Parrots eat nutritious foods despite toxins. PLoS ONE. 2012;7:e38293.
    Greene TC. Foraging ecology of the Red-crowned Parakeet (Cyanoramphus novaezelandiae novaezelandiae) and Yellow-crowned Parakeet (C. auriceps auriceps) on Little Barrier Island, Hauraki Gulf, New Zealand. N Z J Ecol. 1998;22:161-71.
    Hurlbert SH. The measurement of niche overlap and some relatives. Ecology. 1978;59:67-77.
    Juárez M, Marateo G, Grilli PG, Pagano L, Rumi M, Silva-Croome M. Estado del conocimiento y nuevos aportes sobre la historia natural del guacamaya verde (Ara militaris). Hornero. 2012;27:5-16.
    Klasing KC. Comparative avian nutrition. Wallingford: CAB International; 1998.
    Krebs CJ. Ecological methodology. New York: Harper and Row; 1989.
    Koutsos EA, Matson KD, Klasing KC. Nutrition of birds in the order Psittaciformes: a review. J Avian Med Surg. 2001;15:257-75.
    Krebs JR, Davies NB. Behavioural ecology: an evolutionary approach. 2nd ed. Malden: Blackwell Scientific Publications; 1984.
    Levins R. Evolution in changing environments. Princeton: Princeton University Press; 1968.
    López-Bazán TF. Envenenamiento con semillas de Hura polyandra (haba de San Ignacio). Rev Mex Med Urg. 2002;2:61-4.
    López-Lanús B. The biology of Great Green Macaw Ara ambigua in southwest Ecuador. Papageienkunde. 1999;3:147-69.
    Loza-Salas CA. Patrones de abundancia, uso de hábitat y alimentación de la guacamaya verde (Ara militaris), en la presa Cajón de Pena, Jalisco, Mexico. B.Sc Thesis. Mexico City: Facultad de Ciencias, Universidad Nacional Autónoma de México; 1997.
    MacArthur RH, Pianka ER. On optimal use of a patchy environment. Am Nat. 1966;100:603-9.
    Martin TE. Resource selection by tropical frugivorous birds: integrating multiple interactions. Oecologia. 1985;66:563-73.
    Matuzak GD, Bezy MB, Brightsmith DJ. Foraging ecology of parrots in a modified landscape: seasonal trends and introduced species. Wilson J Ornithol. 2008;120:353-65.
    Montes-Pérez RC, Mora Camacho O, Mukul Yerves JM. Forage intake of the Collared Peccary (Pecari tajacu). Rev Colomb Cienc Pecu. 2012;25:586-91.
    Morales-Pérez L. Evaluación de la abundancia poblacional y recursos alimenticios para tres géneros de psitácidos en hábitats conservados y perturbados de la costa de Jalisco México. M.Sc Thesis. Mexico City: Universidad Nacional Autónoma de México; 2005.
    Muñoz-Lacy LG. Uso del hábitat y recursos alimenticios por la guacamaya verde (Ara militaris) en la costa de Jalisco y su potencial para el ecoturismo. M.Sc. Thesis, Mexico City: Universidad Nacional Autónoma de México; 2014.
    Neu CW, Byers CR, Peek JM. A technique for analysis of utilization-availability data. J Wildl Manage. 1974;38:541-5.
    Okolie PN, Uaboi-Egbenni PO, Ajekwene AE. Extraction and quality evaluation of Sandbox Tree seed (Hura crepitan) Oil. World J Agric Sci. 2012;8:359-65.
    Olah G, Butchart SHM, Symes A, Medina Guzman I, Cunningham R, Brightsmith DJ, et al. Ecological and socio-economic factors affecting extinction risk in parrots. Biodivers Conserv. 2016;25:205-23.
    Pennington TD, Sarukhán J. Árboles tropicales de México. Manual para la identificación de las principales especies. 3rd ed. Mexico City: Universidad Nacional Autónoma de México y Fondo de Cultura Económica; 2005.
    Pitter E, Christiansen MB. Ecology, status and conservation of the Red-fronted Macaw Ara rubrogenys. Bird Conserv Int. 1995;5:61-78.
    Plata FX, Evergenny S, Resendiz JL, Villarreal O, Bárcena R, Viccon JA, et al. Palatabilidad y composición química de alimentos consumidos en cautiverio por el venado cola blanca de Yucatán (Odocoileus virginianus yucatanensis). Arch Med Vet. 2009;41:123-9.
    Puebla-Olivares F, Salcedo-Hernandez JE, Figueroa-Esquivel EM. El habillo (Hura polyandra) en la dieta de la guacamaya verde (Ara militaris). Huitzil Rev Mex Ornitol. 2018;19:157-67.
    Pyke GH, Pulliam HR, Charnov EL. Optimal foraging: a selective review of theory and tests. Q Rev Biol. 1997;52:137-54.
    Ragusa-Netto J. Dry fruits and the abundance of the Blue-and-yellow Macaw (Ara ararauna) at a cerrado remnant in central Brazil. Ornitol Neotrop. 2006;17:491-500.
    Ragusa-Netto J, Fecchio A. Plant food resources and the diet of a parrot community in a gallery forest of the Southern Pantanal (Brazil). Braz J Biol. 2006;66:1021-32.
    Renton K. Lilac-crowned parrot diet and food resource availability: resource tracking by a parrot seed predator. Condor. 2001;103:62-9.
    Renton K. Diet of adult and nestling Scarlet Macaws in Southwest Belize, Central America. Biotropica. 2006;38:280-3.
    Renton K, Salinas-Melgoza A, De Labra Hernández MA, de la Parra-Martínez SM. Resource requirements of parrots: nest-site selectivity and dietary plasticity of Psittaciformes. J Ornithol. 2015;156(Suppl. 1):73-90.
    Robinet O, Bretagnolle V, Clout M. Activity patterns, habitat use, foraging behavior and food selection of the Ouvea Parakeet (Eunymphicus cornutus uvaeensis). Emu. 2003;103:71-80.
    Rubio RY. Preferencia de hábitat de la guacamaya verde (Ara militaris Linné) en el municipio de Cosalá, Sinaloa. M.Sc. Thesis. Mexico City: Universidad Nacional Autónoma de México; 2015.
    Rzedowski J. Vegetación de México, digital edition. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City; 2006. .
    Sandoval GMP. Inventario avifaunístico de la presa Cajón de Peña, Jalisco, México. Guadalajara: Universidad Autónoma de Guadalajara; 1992.
    Santos AA, Ragusa-Netto J. Plant food resources exploited by Blue-and-Yellow Macaws (Ara ararauna, Linnaeus 1758) at an urban area in Central Brazil. Braz J Biol. 2014;74:429-37.
    Saunders DA. Problems of survival in an extensively cultivated landscape: the case of Carnaby's Cockatoo Calyptorhynchus funereus latirostris. Biol Conserv. 1990;54:277-90.
    Saunders DA. The effect of land clearing on the ecology of Carnaby's Cockatoo and the inland Red-tailed Black Cockatoo in the wheatbelt of western Australia. Acta XX Congressus International Ornithologici; 1991. p 658-65.
    Saunders DA, Lngram JA. Factors affecting survival of breeding populations of Carnaby's Cockatoo Calyptorhynchus funereus latirostris in remnants of native vegetation. In: Saunders DA, Arnold GW, Burbidge AA, Hopkins AJM, editors. Nature Conservation: the role of remnants of native vegetation. Australia: Surrey Beatty & Sons; 1987. p. 249-58.
    Schoener TW. Theory of feeding strategies. Ann Rev Ecol Syst. 1971;2:369-404.
    SIEG. Diagnóstico del Municipio Cabo Corrientes. Sistema de Información Estadística y Geográfica de Jalisco. 2012. .
    Skoog DA, Holler FJ, Crouch SR. Principios de análisis instrumental. 6th ed. Illes Balears: Cengage Learning; 2008.
    Stephens DW, Krebs JR. Foraging theory. Princeton: Princeton University Press; 1986.
    Valera F, Wagner RH, Romero-Pujante M, Gutiérrez JE, Rey PJ. Dietary specialization on high protein seeds by adult and nestling serins. Condor. 2005;107:29-40.
    Vaughan CN, Nemeth N, Marineros L. Scarlet Macaw, Ara macao, (Psittaciformes: Psittacidae) diet in central Pacific Costa Rica. R Biol Trop. 2006;54:919-26.

Catalog

    Figures(2)  /  Tables(3)

    Article Metrics

    Article views (539) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return