Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
José Luis Tellería, Irene Hernández-Tellez, Iván de la Hera, José Ignacio Aguirre, Alejandro Onrubia. 2022: Altitudinal seasonality as a potential driver of morphological diversification in rear-edge bird populations. Avian Research, 13(1): 100039. doi: 10.1016/j.avrs.2022.100039
Citation: José Luis Tellería, Irene Hernández-Tellez, Iván de la Hera, José Ignacio Aguirre, Alejandro Onrubia. 2022: Altitudinal seasonality as a potential driver of morphological diversification in rear-edge bird populations. Avian Research, 13(1): 100039. doi: 10.1016/j.avrs.2022.100039

Altitudinal seasonality as a potential driver of morphological diversification in rear-edge bird populations

doi: 10.1016/j.avrs.2022.100039
More Information
  • Corresponding author: E-mail address: telleria@bio.ucm.es (J. Tellería)
  • Received Date: 26 Sep 2021
  • Accepted Date: 05 May 2022
  • Available Online: 11 Oct 2022
  • Publish Date: 18 May 2022
  • Populations at the low latitude limits of a species range (rear-edge populations) are often considered more vulnerable to climate change. However, their ability to track different environmental settings at a regional scale has been widely overlooked, although this may be relevant to accurately assess their adaptive capacity to cope with ongoing changes. Here we tested whether the endemic African Chaffinch (Fringilla coelebs africana) tracks environmental changes (e.g. decreasing temperatures, snow cover) by rearranging their numbers between seasons (spring vs. winter) along the altitude gradients of its northwestern African range. We additionally tested whether these seasonal changes in abundance were paralleled by morphological variation, suggesting a process of population diversification. We assessed African Chaffinch abundance in tree covered farmland and woodland sites distributed along an altitude gradient in spring and winter. In addition, we captured and measured chaffinches within the study gradient to explore the patterns of morphological variation. Our results showed that chaffinches shifted to lowlands from snow covered highlands during winter. In addition, highland individuals showed longer and more concave wings than their lowland counterparts. These morphological traits are usually related to flight efficiency in migratory birds, which suggest the presence of altitudinal movements aimed to track the environmental seasonality caused by orography. These results suggest a potential role of altitudinal seasonality as a driver of regional diversification within the African Chaffinch populations, which could be occurring in other North African avian species given their relatively high endemicity in the region. The evolutionary and conservation implications of these displacements have been often overlooked despite they can shape the adaptive capacity of rear-edge bird populations to face the ongoing environmental changes in this peripheral area of the Palearctic.

     

  • loading
  • Angert, A.L., Crozier, L.G., Rissler, L.J., Gilman, S.E., Tewksbury, J.J., Chunco, A.J., 2011. Do species' traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677-689. doi: 10.1111/j.1461-0248.2011.01620.x
    Angert, A.L., Bontrager, M.G., Agren, J., 2020. What do we really know about adaptation at range edges? Annu. Rev. Ecol. Evol. Syst. 51, 341-361. doi: 10.1146/annurev-ecolsys-012120-091002
    Bibby, C.J., Burgess, N.D., Hill, D.A., Mustoe, S.H., 2000. Bird Census Techniques, second ed. Elsevier, London.
    Boudhar, A., Duchemin, B., Hanich, L., Boulet, G., Chehbouni, A., 2011. Spatial distribution of the air temperature in mountainous areas using satellite thermal infra-red data. C.R. Geosci. 343, 32-42. doi: 10.1016/j.crte.2010.11.004
    Boyle, W.A., 2017. Altitudinal bird migration in North America. Auk 134, 443-465. doi: 10.1642/AUK-16-228.1
    Boyle, W.A., Sandercock, B.K., Martin, K., 2016. Patterns and drivers of intraspecfic variation in avian life-histories along elevational gradients: a meta-analysis. Biol. Rev. 91, 469-482. doi: 10.1111/brv.12180
    Bruderer, B., Salewski, V., 2008. Evolution of bird migration in a biogeographical context. J. Biogeogr. 35, 1951-1959. doi: 10.1111/j.1365-2699.2008.01992.x
    Bucchignani, E., Mercogliano, P., Panitz, H.J., Montesarchio, M., 2018. Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Chang. Res. 9, 66-80. doi: 10.1016/j.accre.2018.01.004
    Carrascal, L.M., Palomino, D., 2012. Variacion geografica de la riqueza de especies invernantes en la peninsula Iberica. Estacionalidad y determinismo ambiental. In: del Moral, J.C., Molina, B., Bermejo, A., Palomino, D. (Eds. ), Atlas de las Aves en Invierno en Espana 2007-2010. Ministerio de Agricultura, Alimentacion y Medio Ambiente-SEO/BirdLife, Madrid, pp. 36-47.
    Carrascal, L.M., Potti, J., Sanchez-Aguado, F.J., 1987. Spatio-temporal organization of the bird communities in two Mediterranean montane forests. Ecography 10, 185-192. doi: 10.1111/j.1600-0587.1987.tb00757.x
    Carrascal, L.M., Villén-Pérez, S., Seoane, J., 2012. Thermal, food and vegetation effects on winter bird species richness of Mediterranean oakwoods. Ecol. Res. 27, 293-302. doi: 10.1007/s11284-011-0900-x
    Chapman, B.B., Brönmark, C., Nilsson, J.A., Hansson, L.A., 2011. The ecology and evolution of partial migration. Oikos 120, 1764-1775. doi: 10.1111/j.1600-0706.2011.20131.x
    Claramunt, S., 2021. Flight efficiency explains differences in natal dispersal distances in birds. Ecology 102, e03442.
    Cramp, S., Perrins, C.M., 1994. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic, vol. VIII Crows to Finches. University Press, Oxford.
    de la Hera, I., Perez-Tris, J., Tellería, J.L., 2012. Habitat distribution of migratory and sedentary blackcaps Sylvia atricapilla wintering in southern Iberia: a morphological and biogeochemical approach. J. Avian Biol. 43, 333-340. doi: 10.1111/j.1600-048X.2012.05804.x
    de la Hera, I., Pulido, F., Visser, M.E., 2014. Longitudinal data reveal ontogenetic changes in the wing morphology of a long-distance migratory bird. Ibis 156, 209-214. doi: 10.1111/ibi.12112
    Desrochers, A., 2010. Morphological response of songbirds to 100 years of landscape change in North America. Ecology 91, 1577-1582. doi: 10.1890/09-2202.1
    Dingle, H., Drake, V.A., 2007. What is migration? Bioscience 57, 113-121. doi: 10.1641/B570206
    Fox, J., Bouchet-Valat, M., 2020. Rcmdr: R Commander. R package version 2.7-1.
    Fudickar, A.M., Partecke, J., 2012. The flight apparatus of migratory and sedentary individuals of a partially migratory songbird species. PLoS One 7, e51920. doi: 10.1371/journal.pone.0051920
    García-Ramos, G., Kirkpatrick, M., 1997. Genetic models of adaptation and gene flow in peripheral populations. Evolution 51, 21-28. doi: 10.1111/j.1558-5646.1997.tb02384.x
    Gienapp, P., Teplitsky, C., Alho, J.S., Mills, J.A., Merilä, J., 2008. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167-178. doi: 10.1111/j.1365-294X.2007.03413.x
    Griswold, C.K., Baker, A.J., 2002. Time to the most recent common ancestor and divergence times of populations of common chaffinches (Fringilla coelebs) in Europe and North Africa: insights into Pleistocene refugia and current levels of migration. Evolution 56, 143-153. doi: 10.1111/j.0014-3820.2002.tb00856.x
    Hampe, A., Petit, R.J., 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461-467. doi: 10.1111/j.1461-0248.2005.00739.x
    Hampe, A., Jump, A.S., 2011. Climate relicts: past, present, future. Annu. Rev. Ecol. Evol. Syst. 42, 313-333. doi: 10.1146/annurev-ecolsys-102710-145015
    Hannah, L., Flint, L., Syphard, A.D., Moritz, M.A., Buckley, L.B., McCullough, I.M., 2014. Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390-397. doi: 10.1016/j.tree.2014.04.006
    Hedenström, A., 2008. Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos. T. Roy. Soc. B. 363, 287-299. doi: 10.1098/rstb.2007.2140
    Hewitt, G.M., 1999. Postglacial recolonization of European biota. Biol. J. Linn. Soc. 68, 87-112. doi: 10.1111/j.1095-8312.1999.tb01160.x
    Hsiung, A.C., Boyle, W.A., Cooper, R.J., Chandler, R.B., 2018. Altitudinal migration: ecological drivers, knowledge gaps, and conservation implications. Biol. Rev. 93, 2049-2070. doi: 10.1111/brv.12435
    Huber, G., Turbek, S., Bostwick, K.S., Safran, R.J., 2017. Comparative analyses reveal migratory swallows (Hirundinidae) have less pointed wings than residents. Biol. J. Linn. Soc. 120, 228-235.
    Husemann, M., Schmitt, T., Zachos, F.E., Ulrich, W., Habel, C., 2014. Palaearctic biogeography revised: evidence for the existence of a North African refugium for western Palaearctic biota. J. Biogeogr. 41, 81-94. doi: 10.1111/jbi.12180
    Isenmann, P., Thévento, M., 2018. Endemism and taxonomic differentiation in terrestrial breeding birds of North Africa. Alauda 86, 117-152.
    Jenni, L., Winkler, R., 1994. Moult and Ageing of European Passerines. Academic Press, London.
    Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., et al., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 4, 170122. doi: 10.1038/sdata.2017.122
    Kawecki, T.J., 2008. Adaptation to marginal habitats. Annu. Rev. Ecol. Evol. Syst. 39, 321-342. doi: 10.1146/annurev.ecolsys.38.091206.095622
    Leisler, B., Winkler, H., 2003. Morphological consequences of migration in passerines. In: Berthold, P., Gwinner, E., Sonnenschein, E. (Eds. ), Avian Migration. Springer, Berlin, pp. 175-186.
    Lockwood, R., Swaddle, J.P., Rayner, J.M.V., 1998. Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J. Avian Biol. 29, 273-292. doi: 10.2307/3677110
    Lundblad, C.G., Conway, C.J., 2019. Variation in selective regimes drives intraspecific variation in life-history traits and migratory behaviour along an elevational gradient. J. Anim. Ecol. 89, 397-411.
    MacLean, S.A., Beissinger, S.R., 2017. Species' traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Chang. Biol. 10, 4094-4105.
    Marchane, A., Jarlan, L., Hanich, L., Boudhar, A., Gascoin, S., Tavernier, A., et al., 2015. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens. Environ. 160, 72-86. doi: 10.1016/j.rse.2015.01.002
    Merker, S.A., Chandler, R.B., 2020. Identifying global hotspots of avian trailing-edge population diversity. Glob. Ecol. Conserv. 22, e00915. doi: 10.1016/j.gecco.2020.e00915
    Newton, I., Dale, L., 1996. Relationship between migration and latitude among west European birds. J. Anim. Ecol. 71, 137-146.
    Noreau, F., Desrochers, A., 2018. Combined effects of migration distance, foraging method vegetation density, and population density on wing shapes of boreal songbirds. bioRxiv 413351.
    Pennycuick, C.J., 2001. Speeds and wingbeat frequencies of migrating birds compared with calculated benchmarks. J. Exp. Biol. 204, 3283-3294. doi: 10.1242/jeb.204.19.3283
    Perktaş, U., Peterson, A.T., Dyer, D., 2017. Integrating morphology, phylogeography, and ecological niche modeling to explore population differentiation in North African Common Chaffinches. J. Ornithol. 158, 1-13. doi: 10.1007/s10336-016-1361-3
    Pironon, S., Papuga, G., Villellas, J., Angert, A.L., García, M.B., Thompson, J.D., 2017. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 92, 1877-1909. doi: 10.1111/brv.12313
    QGIS Association, 2021. QGIS Geographic Information System (2021). https://www.qgis.org/. (Accesed 21 March 2021).
    Quézel, P., 1983. Flore et végétation actuelles de l'Afrique du nord, leur signification en fonction de l'origine, de Involution et des migrations des flores et structures de végétation passees. Bothalia 14, 411-416. doi: 10.4102/abc.v14i3/4.1186
    Rayner, J.M.V., 1988. Form and function in avian flight. Curr. Ornithol. 5, 1-66.
    Richardson, J.L., Urban, M.C., Bolnick, D.I., Skelly, D.K., 2014. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29, 165-176. doi: 10.1016/j.tree.2014.01.002
    Robinson, R.A., Crick, H.Q.P., Learmonth, J.A., Maclean, I.M.D., Thomas, C.D., Bairlein, F., et al., 2009. Travelling through a warming world: climate change and migratory species. Endanger Species Res. 7, 87-99. doi: 10.3354/esr00095
    Ruiz-Labourdette, D., Nogués-Bravo, D., Ollero, H.S., Schmitz, M.F., Pineda, F.D., 2012. Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 39, 162-176. doi: 10.1111/j.1365-2699.2011.02592.x
    Sachs, G., Lenz, J., 2011. New modeling approach for bounding flight in birds. Math. Biosci. 234, 75-83. doi: 10.1016/j.mbs.2011.08.005
    Sander, M.M., Chamberlain, D., 2020. Evidence for intraspecific phenotypic variation in songbirds along elevation gradients in central Europe. Ibis 162, 1355-1362. doi: 10.1111/ibi.12843
    Savile, D.B.O., 1957. Adaptive evolution in the avian wing. Evolution 11, 212-224. doi: 10.1111/j.1558-5646.1957.tb02889.x
    Schmaljohann, H., Liechti, F., 2009. Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds. J. Exp. Biol. 212, 3633-3642. doi: 10.1242/jeb.031435
    Senar, J.C., Pascual, J., 1997. Keel and tarsus length may provide a good predictor of avian body size. Ardea 85, 269-274.
    Sheard, C., Neate-Clegg, M.H.C., Alioravainen, N., Jones, S.E.I., Vicent, C., MacGregor, H.E.A., et al., 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463. doi: 10.1038/s41467-020-16313-6
    Svensson, L., 1992. Identification Guide to European Passerines. Svensson, Stockholm.
    Tellería, J.L., de La Hera, I., Perez-Tris, J., 2013. Morphological variation as a tool for monitoring bird populations: a review. Ardeola 60, 191-224. doi: 10.13157/arla.60.2.2013.191
    Tellería, J.L., Fandos, G., Fernández-López, J., 2020. Winter bird richness distribution in the south-western Palearctic: current patterns and potential changes. Ardeola 68, 17-32. doi: 10.13157/arla.68.1.2021.ra2
    Tellería, J.L., Fandos, G., López, J.F., Onrubia, A., Refoyo, P., 2014. Winter distribution of passerine richness in the Maghreb (North Africa): a conservation assessment. Ardeola 61, 335-350. doi: 10.13157/arla.61.2.2014.335
    Tellería, J.L., Pérez-Tris, J., Carbonell, R., 2001. Seasonal changes in abundance and flight-related morphology reveal different migration patterns in Iberian forest passerines. Ardeola 48, 27-46.
    Tellería, J.L., Hernández-Lambraño, R.E., Carbonell, R., 2021. Ecological and geographical marginality in rear edge populations of Palaearctic forest birds. J. Biogeogr. 48, 2538-2549. doi: 10.1111/jbi.14219
    Thevenot, M., Vernon, R., Bergier, P., 2003. The Birds of Morocco. BOU, Tring.
    Thioulouse, J., Dray, S., Dufour, A., Siberchicot, A., Jombart, T., Pavoine, S., 2018. Multivariate Analysis of Ecological Data with ade4. Springer, New York.
    Tingley, M.W., Darling, E.S., Wilcove, D.S., 2014. Fine-and coarse-filter conservation strategies in a time of climate change. Ann. N.Y. Acad. Sci. 1322, 92-109. doi: 10.1111/nyas.12484
    Travis, J.M., Delgado, M., Bocedi, G., Baguette, M., Bartoń, K., Bonte, D., et al., 2013. Dispersal and species' responses to climate change. Oikos 122, 1532-1540. doi: 10.1111/j.1600-0706.2013.00399.x
    Vágási, C.I., Pap, P.L., Vincze, O., Osváth, G., Erritzøe, J., Møller, A.P., 2016. Morphological adaptations to migration in birds. Evol. Biol. 43, 48-59. doi: 10.1007/s11692-015-9349-0
    Vilà-Cabrera, A., Premoli, A.C., Jump, A.S., 2019. Refining predictions of population decline at species' rear edges. Glob. Chang. Biol. 25, 1549-1560. doi: 10.1111/gcb.14597
    Williams, S.E., Shoo, L.P., Isaac, J.L., Hoffmann, A.A., Langham, G., 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, 2621-2626.
    Williamson, J.L., Witt, C.C., 2021. Elevational niche-shift migration: why the degree of elevational change matters for the ecology, evolution, and physiology of migratory birds. Auk 138, 1-26.
    Winkler, H., Leisler, B., 1992. On the ecomorphology of migrants. Ibis 134, 21-28.
    Zeileis, A., Kleiber, C., Jackman, S., 2008. Regression models for count data in R. J. Stat. Softw 27, 1-25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (126) PDF downloads(3) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return