Anderson, C., Johnston, M., Marrs, E.J., Porter, B., Colombo, M., 2020a. Delay activity in the Wulst of pigeons (Columba livia) represents correlates of both sample and reward information. Neurobiol. Learn. Mem. 171, 107214. doi: 10.1016/j.nlm.2020.107214 |
Anderson, C., Parra, R.S., Chapman, H., Steinemer, A., Porter, B., Colombo, M., 2020b. Pigeon nidopallium caudolaterale, entopallium, and mesopallium ventrolaterale neural responses during categorisation of Monet and Picasso paintings. Sci. Rep. 10, 15971. doi: 10.1038/s41598-020-72650-y |
Atoji, Y., Wild, J.M., 2012. Afferent and efferent projections of the mesopallium in the pigeon (Columba livia). J. Comp. Neurol. 520, 717-741. doi: 10.1002/cne.22763 |
Azizi, A.H., Pusch, R., Koenen, C., Klatt, S., Broker, F., Thiele, S., et al., 2019. Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia). Behav. Brain Res. 356, 423-434. doi: 10.1016/j.bbr.2018.05.014 |
Bayer, H.M., Glimcher, P.W., 2005. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129-141. doi: 10.1016/j.neuron.2005.05.020 |
Behroozi, M., Helluy, X., Strockens, F., Gao, M., Pusch, R., Tabrik, S., et al., 2020. Event-related functional MRI of awake behaving pigeons at 7T. Nat. Commun. 18, 4715. |
Behroozi, M., Strockens, F., Stacho, M., Gunturkun, O., 2017. Functional connectivity pattern of the internal hippocampal network in awake pigeons: a resting-state fMRI study. Brain Behav. Evol. 90, 62-72. doi: 10.1159/000475591 |
Berg, M.E., Grace, R.C. 2011. Categorization of multidimensional stimuli by pigeons. J. Exp. Anal. Behav. 95, 305-326. doi: 10.1901/jeab.2010.94-305 |
Burton, R.F., 2008. The scaling of eye size in adult birds: relationship to brain, head and body sizes. Vision Res. 48, 2345-2351. doi: 10.1016/j.visres.2008.08.001 |
Campos, H.C., Debert, P., da Silva Barros, R., McIlvane, W.J., 2011. Relational discrimination by pigeons in a go/no-go procedure with compound stimuli: a methodological note. J. Exp. Anal. Behav. 96, 417-426. doi: 10.1901/jeab.2011.96-413 |
Castro, L., Wasserman, E.A., 2013. Information-seeking behavior: exploring metacognitive control in pigeons. Anim. Cogn. 16, 241-254. doi: 10.1007/s10071-012-0569-8 |
Cheng, S., Li, M., Yu, H., Zhao, K., Liu, S., Wan, H., 2020. Decoding pigeon behavior outcomes during goal-directed decision task by WSR functional network analysis. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 38-41. |
Chen, J., Zou, Y., Sun, Y.H., Ten Cate, C., 2019. Problem-solving males become more attractive to female budgerigars. Science 363, 166-167. doi: 10.1126/science.aau8181 |
Clark, W.J., Colombo, M., 2020. The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain. Prog. Neurobiol. 195, 101781. doi: 10.1016/j.pneurobio.2020.101781 |
Clark, W.J., Porter, B., Colombo, M., 2019. Searching for face-category representation in the avian visual forebrain. Front. Physiol. 10, 140. doi: 10.3389/fphys.2019.00140 |
Clayton, N.S., Emery, N.J., 2015. Avian models for human cognitive aeuroscience: a proposal. Neuron 86, 1330-1342. doi: 10.1016/j.neuron.2015.04.024 |
Coello, Y., Danckert, J., Blangero, A., Rossetti, Y., 2007. Do visual illusions probe the visual brain? Illusions in action without a dorsal visual stream. Neuropsychologia 45, 1849-1858. doi: 10.1016/j.neuropsychologia.2006.12.010 |
Cole, E., Chad, M., Moman, V., Mumby, D.G., 2020. A Go/No-go delayed nonmatching-to-sample procedure to measure object-recognition memory in rats. Behav. Process. 178, 104180. doi: 10.1016/j.beproc.2020.104180 |
Colombo, M., 2017. Prospective processing: behavioural and neural evidence. Jpn. J. Anim. Psychol. 67, 47-61. doi: 10.2502/janip.67.2.2 |
Cook, R.G., 2000. The comparative psychology of avian visual cognition. Curr. Direct. Psychol. Sci. 9, 83-89. doi: 10.1111/1467-8721.00066 |
Cook, R.G., Qadri, M.A.J., Keller, A.M., 2015. The analysis of visual cognition in birds: implications for evolution, mechanism, and representation. Psychol. Learn. Motivat. 63, 173-210. doi: 10.1016/bs.plm.2015.03.002 |
Cook, R.G., Wright, A.A., Drachman, E.E., 2013. Categorization of birds, mammals, and chimeras by pigeons. Behav. Process. 93, 98-110. doi: 10.1016/j.beproc.2012.11.006 |
Daniel, T.A., Cook, R.G., Katz, J.S., 2015. Temporal dynamics of task switching and abstract-concept learning in pigeons. Front. Psychol. 6, 1334. |
Daniel, T.A., Wright, A.A., Katz, J.S., 2015. Abstract-concept learning of difference in pigeons. Anim. Cogn. 18, 831-837. doi: 10.1007/s10071-015-0849-1 |
de Brouwer, A.J., Smeets, J.B., Gutteling, T.P., Toni, I., Medendorp, W.P., 2015. The Muller-Lyer illusion affects visuomotor updating in the dorsal visual stream. Neuropsychologia 77, 119-127. doi: 10.1016/j.neuropsychologia.2015.08.012 |
de Groof, G., Jonckers, E., Gunturkun, O., Denolf, P., Van Auderkerke, J., Van der Linden, A., 2013. Functional MRI and functional connectivity of the visual system of awake pigeons. Behav. Brain Res. 239, 43-50. doi: 10.1016/j.bbr.2012.10.044 |
de la Malla, C., Brenner, E., de Haan, E.H.F., Smeets, J.B.J., 2019. A visual illusion that influences perception and action through the dorsal pathway. Commun. Biol. 2, 38. doi: 10.1038/s42003-019-0293-x |
Ditz, H.M., Nieder, A., 2015. Neurons selective to the number of visual items in the corvid songbird endbrain. P. Natl. Acad. Sci. U. S. A. 112, 7827-7832. doi: 10.1073/pnas.1504245112 |
Ditz, H.M., Nieder, A., 2016. Numerosity representations in crows obey the Weber-Fechner law. Proc. Biol. Sci. 283, 20160083. doi: 10.1098/rspb.2016.0083 |
Dugas-Ford, J., Ragsdale, C. W., 2015. Levels of homology and the problem of neocortex. Annu. Rev. Neurosci. 38, 351-368. doi: 10.1146/annurev-neuro-071714-033911 |
Emery, N.J., 2005. Cognitive ornithology: the evolution of avian intelligence. Phil. Trans. R. Soc. B. 361, 23-43. |
Fernandez-Juricic, E., 2012. Sensory basis of vigilance behavior in birds: synthesis and future prospects. Behav. Process. 89, 143-152. doi: 10.1016/j.beproc.2011.10.006 |
Fields, L., Verhave, T., Fath, S., 1984. Stimulus equivalence and transitive associations: a methodological analysis. J. Exp. Anal. Behav. 42, 143-157. doi: 10.1901/jeab.1984.42-143 |
Frost, B.J., 2009. Bird head stabilization. Curr. Biol. 19, R315-R316. doi: 10.1016/j.cub.2009.02.002 |
Gadagkar, V., Puzerey, P.A., Chen, R., Baird-Daniel, E., Farhang, A.R., Goldberg, J.H., 2016. Dopamine neurons encode performance error in singing birds. Science 354, 1278-1282. doi: 10.1126/science.aah6837 |
Garlick, D., Fountain, S.B., Blaisdell, A.P., 2017. Serial pattern learning in pigeons: Rule-based or associative? J. Exp. Psychol. Anim. Learn. Cogn. 43, 30-47. doi: 10.1037/xan0000109 |
Geers, L., Pesenti, M., Andres, M., 2018. Visual illusions modify object size estimates for prospective action judgements. Neuropsychologia 117, 211-221. doi: 10.1016/j.neuropsychologia.2018.06.003 |
Guez, D., Audley, C., Hauber, M., 2013. Transitive or not: a critical appraisal of transitive inference in animals. Ethology 119, 703-726. https://doi.org/10.1111/eth.12124. |
Gunturkun, O., Bugnyar, T., 2016. Cognition without Cortex. Trends. Cogn. Sci. 20, 291-303. doi: 10.1016/j.tics.2016.02.001 |
Gunturkun, O., Koenen, C., Iovine, F., Garland, A., Pusch, R., 2018. The neuroscience of perceptual categorization in pigeons: a mechanistic hypothesis. Learn. Behav. 46, 229-241. doi: 10.3758/s13420-018-0321-6 |
Gunturkun, O., von Eugen, K., Packheiser, J., Pusch, R., 2021. Avian pallial circuits and cognition: a comparison to mammals. Curr. Opin. Neurobiol. 71, 29-36. |
Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C., Braun, E.L., Braun, M.J., et al., 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763-1768. doi: 10.1126/science.1157704 |
Hasselmo, M.E., 2006. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710-715. doi: 10.1016/j.conb.2006.09.002 |
Hedges, S.B., 2002. The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838-849. doi: 10.1038/nrg929 |
Herbranson, W.T., Karas, E., Hardin, G., 2017. Perception of angle in visual categorization by pigeons (Columba livia). Anim. Behav. Cogn. 4, 286-300. doi: 10.26451/abc.04.03.07.2017 |
Herrnstein, R.J., Loveland, D.H., 1964. Complex visual concept in the pigeon. Science 146, 549-551. doi: 10.1126/science.146.3643.549 |
Hsiao, Y.T., Chen, T.C., Yu, P.H., Huang, D.S., Hu, F.R., Chuong, C.M., et al., 2020. Connectivity between nidopallium caudolateral and visual pathways in color perception of zebra finches. Sci. Rep. 10, 19382. doi: 10.1038/s41598-020-76542-z |
Jarvis, E.D., Mirarab, S., Aberer, A.J., Li, B., Houde, P., Li, C., et al., 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320-1331. doi: 10.1126/science.1253451 |
Johnston, M., Anderson, C., Colombo, M., 2017. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia). Behav. Brain Res. 317, 382-392. doi: 10.1016/j.bbr.2016.10.003 |
Karten, H.J., 2015. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian 'neocortex'. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20150060-20150060. doi: 10.1098/rstb.2015.0060 |
Knudsen, E.I., 2018. Neural circuits that mediate selective attention: a comparative perspective. Trends. Neurosci. 41, 789-805. doi: 10.1016/j.tins.2018.06.006 |
Koenen, C., Pusch, R., Broker, F., Thiele, S., Gunturkun, O., 2016. Categories in the pigeon brain: a reverse engineering approach. J. Exp. Anal. Behav. 105, 111-122. doi: 10.1002/jeab.179 |
Krauzlis, R.J., Bogadhi, A.R., Herman, J.P., Bollimunta, A., 2018. Selective attention without a neocortex. Cortex 102, 161-175. doi: 10.1016/j.cortex.2017.08.026 |
Krutzfeldt, N.O., Wild, J.M., 2005. Definition and novel connections of the entopallium in the pigeon (Columba livia). J. Comp. Neurol. 490, 40-56. doi: 10.1002/cne.20627 |
Ksepka, D.T., Balanoff, A.M., Smith, N.A., Bever, G.S., Bhullar, B.S., Bourdon, E., et al., 2020. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, e2023. |
Kumar, S., Hedges, S.B., 1998. A molecular timescale for vertebrate evolution. Nature 392, 917-920. doi: 10.1038/31927 |
Lazareva, O.F., Smirnova, A.A., Bagozkaja, M.S., Zorina, Z.A., Rayevsky, V.V., Wasserman, E.A., 2004. Transitive responding in hooded crows requires linearly ordered stimuli. J. Exp. Anal. Behav. 82, 1-19. doi: 10.1901/jeab.2004.82-1 |
Levenson, R.M., Krupinski, E.A., Navarro, V.M., Wasserman, E.A., 2015. Pigeons (Columba livia) as trainable observers of pathology and radiology breast cancer images. PLoS ONE 10, e0141357. doi: 10.1371/journal.pone.0141357 |
Liu, Y., Xin, Y., Xu, N.L., 2021. A cortical circuit mechanism for structural knowledge-based flexible sensorimotor decision-making. Neuron 109, 2009-2024. doi: 10.1017/s001675682100056x |
Lombardi, C.M., 2007. Matching and oddity relational learning by pigeons (Columba livia): transfer from color to shape. Anim. Cognit. 11, 67-74. doi: 10.1007/s10071-007-0087-2 |
Ma, X., Zhang, Y., Wang, L., Li, N., Barkai, E., Zhang, X., et al., 2020. The firing of theta state-related septal cholinergic neurons disrupt hippocampal ripple oscillations via muscarinic receptors. J. Neurosci. 40, 3591-3603. doi: 10.1523/jneurosci.1568-19.2020 |
Manns, M., Romling, J., 2012. The impact of asymmetrical light input on cerebral hemispheric specialization and interhemispheric cooperation. Nat. Commun. 3, 696. doi: 10.1038/ncomms1699 |
Marzluff, J.M., Miyaoka, R., Minoshima, S., Cross, D.J., 2012. Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces. Proc. Natl. Acad. Sci. U. S. A. 109, 15912-15917. doi: 10.1073/pnas.1206109109 |
Mikolasch, S., Kotrschal, K., Schloegl, C., 2013. Transitive inference in jackdaws (Corvus monedula). Behav. Process. 92, 113-117. doi: 10.1016/j.beproc.2012.10.017 |
Moll, F.W., Nieder, A., 2015. Cross-modal associative mnemonic signals in crow endbrain neurons. Curr. Biol. 25, 2196-2201. doi: 10.1016/j.cub.2015.07.013 |
Morandi-Raikova, A., Danieli, K., Lorenzi, E., Rosa-Salva, O., Mayer, U., 2021. Anatomical asymmetries in the tectofugal pathway of dark-incubated domestic chicks: Rightwards lateralization of parvalbumin neurons in the entopallium. Laterality 26, 163-185. doi: 10.1080/1357650x.2021.1873357 |
Murphy, M.S., Brooks, D.I., Cook, R.G., 2015. Pigeons use high spatial frequencies when memorizing pictures. J. Exp. Psychol. Anim. Learn. Cogn. 41, 277-285. doi: 10.1037/xan0000055 |
Ng, B.S., Grabska-Barwinska, A., Gunturkun, O., Jancke, D., 2010. Dominant vertical orientation processing without clustered maps: early visual brain dynamics imaged with voltage-sensitive dye in the pigeon visual Wulst. J. Neurosci. 30, 6713-6725. doi: 10.1523/JNEUROSCI.4078-09.2010 |
Nieder, A., 2020. The adaptive value of numerical competence. Trends. Ecol. Evol. 35, 605-617. doi: 10.1016/j.tree.2020.02.009 |
Nieder, A., Wagener, L., Rinnert, P., 2020. A neural correlate of sensory consciousness in a corvid bird. Science 369, 1626-1629. doi: 10.1126/science.abb1447 |
Nomoto, K., Schultz, W., Watanabe, T., Sakagami, M., 2010. Temporally extended dopamine responses to perceptually demanding reward-predictive stimuli. J. Neurosci. 30, 10692-10702. doi: 10.1523/JNEUROSCI.4828-09.2010 |
Norton, J.W., Corbett, J.J., 2000. Visual perceptual abnormalities: hallucinations and illusions. Semin. Neurol. 20, 111-121. doi: 10.1055/s-2000-6837 |
Olkowicz, S., Kocourek, M., Lucan, R.K., Portes, M., Fitch, W.T., Herculano-Houzel, S., et al., 2016. Birds have primate-like numbers of neurons in the forebrain. P. Natl. Acad. Sci. U. S. A. 113, 7255-7260. doi: 10.1073/pnas.1517131113 |
Ott, T., Nieder, A., 2019. Dopamine and cognitive control in prefrontal cortex. Trends. Cogn. Sci. 23, 213-234. doi: 10.1016/j.tics.2018.12.006 |
Peissig, J.J., Young, M.E., Wasserman, E.A., Biederman, I., 2005. The role of edges in object recognition by pigeons. Perception 34, 1353-1374. doi: 10.1068/p5427 |
Pepperberg, I.M., Nakayama, K., 2016. Robust representation of shape in a Grey parrot (Psittacus erithacus). Cognition 153, 146-160. doi: 10.1016/j.cognition.2016.04.014 |
Punsawad, Y., Siribunyaphat, N., Wongsawat, Y., 2021. Exploration of illusory visual motion stimuli: an EEG-based brain-computer interface for practical assistive communication systems. Heliyon 7, e06457. doi: 10.1016/j.heliyon.2021.e06457 |
Qadri, M.A., Cook, R.G., 2015. Experimental Divergences in the Visual Cognition of Birds and Mammals. Comp. Cogn. Behav. Rev. 10, 73-105. doi: 10.3819/ccbr.2015.100004 |
Qadri, M.A., Cook, R.G., 2017. Pigeons and humans use action and pose information to categorize complex human behaviors. Vision. Res. 131, 16-25. doi: 10.1016/j.visres.2016.09.011 |
Rinnert, P., Nieder, A., 2021. Neural code of motor planning and execution during goal-directed movements in crows. J. Neurosci. 41, 4060-4072. doi: 10.1523/jneurosci.0739-20.2021 |
Roberts, W.A., Macpherson, K., Strang, C., 2016. Context controls access to working and reference memory in the pigeon (Columba livia). J. Exp. Anal. Behav. 105, 184-193. doi: 10.1002/jeab.188 |
Rowe, M.P., 2016. 25th Annual Computational Neuroscience Meeting: CNS-2016. B.M.C. Neurosci. 17, 54. doi: 10.1186/s12868-016-0283-6 |
Scarf, D., Boy, K., Uber Reinert, A., Devine, J., Gunturkun, O., Colombo, M., 2016a. Orthographic processing in pigeons (Columba livia). P. Natl. Acad. Sci. U. S. A. 113, 11272-11276. doi: 10.1073/pnas.1607870113 |
Scarf, D., Stuart, M., Johnston, M., Colombo, M., 2016b. Visual response properties of neurons in four areas of the avian pallium. J. Comp. Physiol. A. Neuroethol. Sens. Neural Behav. Physiol. 202, 235-245. doi: 10.1007/s00359-016-1071-6 |
Schultz, W., 1998. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1-27. doi: 10.1152/jn.1998.80.1.1 |
Schultz, W., 2016. Dopamine reward prediction-error signalling: a two-component response. Nat. Rev. Neurosci. 17, 183-195. doi: 10.1038/nrn.2015.26 |
Shanahan, M., Bingman, V.P., Shimizu, T., Wild, M., Gunturkun, O., 2013. Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89. |
Sigala, N., Logothetis, N.K., 2002. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318-320. doi: 10.1038/415318a |
Soto, F.A., Wasserman, E.A., 2011. Asymmetrical interactions in the perception of face identity and emotional expression are not unique to the primate visual system. J. Vis. 11, 24. doi: 10.1167/11.3.24 |
Soto, F.A., Wasserman, E.A., 2014. Mechanisms of object recognition: what we have learned from pigeons. Front. Neural Circuits 8, 122. |
Spetch, M.L., Friedman, A., 2006. Pigeons see correspondence between objects and their pictures. Psychol. Sci. 17, 966-972. doi: 10.1111/j.1467-9280.2006.01814.x |
Srihasam, K., Vincent, J.L., Livingstone, M.S., 2014. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17, 1776-1783. doi: 10.1038/nn.3855 |
Stacho, M., Herold, C., Rook, N., Wagner, H., Axer, M., Amunts, K., et al., 2020. A cortex-like canonical circuit in the avian forebrain. Science 369, 6511. |
Stacho, M., Strockens, F., Xiao, Q., Gunturkun, O., 2016. Functional organization of telencephalic visual association fields in pigeons. Behav. Brain Res. 303, 93-102. doi: 10.1016/j.bbr.2016.01.045 |
Strockens, F., Freund, N., Manns, M., Ocklenburg, S., Gunturkun, O., 2013. Visual asymmetries and the ascending thalamofugal pathway in pigeons. Brain Struct. Funct. 218, 1197-1209. doi: 10.1007/s00429-012-0454-x |
Tanaka, K., 1996. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109-139. doi: 10.1146/annurev.ne.19.030196.000545 |
Teng, Y., Vyazovska, O.V., Wasserman, E.A., 2015. Selective attention and pigeons' multiple necessary cues discrimination learning. Behav. Process. 112, 61-71. doi: 10.1016/j.beproc.2014.08.004 |
Van Meir, V., Boumans, T., De Groof, G., Van Audekerke, J., Smolders, A., Scheunders, P., et al., 2005. Spatiotemporal properties of the BOLD response in the songbirds' auditory circuit during a variety of listening tasks. Neuroimage 25, 1242-1255. doi: 10.1016/j.neuroimage.2004.12.058 |
Veit, L., Hartmann, K., Nieder, A., 2017. Spatially tuned neurons in corvid nidopallium caudolaterale signal target position during visual search. Cereb. Cortex 27, 1103-1112. |
Veit, L., Nieder, A., 2013. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat. Commun. 4, 2878. doi: 10.1038/ncomms3878 |
Verhaal, J., Kirsch, J.A., Vlachos, I., Manns, M., Gunturkun, O., 2012. Lateralized reward-related visual discrimination in the avian entopallium. Eur. J. Neurosci. 35, 1337-1343. doi: 10.1111/j.1460-9568.2012.08049.x |
Vorobyev, M., 2003. Coloured oil droplets enhance colour discrimination. Proc. Biol. Sci. 270, 1255-1261. doi: 10.1098/rspb.2003.2381 |
Vyazovska, O.V., 2021. The effect of dimensional reinforcement prediction on discrimination of compound visual stimuli by pigeons. Anim. Cogn. 24, 1329-1338. doi: 10.1007/s10071-021-01526-z |
Vyazovska, O.V., Navarro, V.M., Wasserman, E.A., 2016. Stagewise multidimensional visual discrimination by pigeons. J. Exp. Anal. Behav. 106, 58-74. doi: 10.1002/jeab.217 |
Vyazovska, O.V., Teng, Y., Wasserman, E.A., 2014. Attentional tradeoffs in the pigeon. J. Exp. Anal. Behav. 101, 337-354. doi: 10.1002/jeab.82 |
Waelti, P., Dickinson, A., Schultz, W., 2001. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 38-43. doi: 10.1038/35083684 |
Wang, Y.C., Jiang, S., Frost, B.J., 1993. Visual processing in pigeon nucleus rotundus: luminance, color, motion, and looming subdivisions. Vis. Neurosci. 10, 21-30. doi: 10.1017/S0952523800003199 |
Watanabe, S., 1991. Effects of ectostriatal lesions on natural concept, pseudoconcept, and artificial pattern discrimination in pigeons. Vis. Neurosci. 6, 497-506. doi: 10.1017/S0952523800001346 |
Wei, C.A., Kamil, A.C., Bond, A.B., 2014. Direct and relational representation during transitive list linking in pinyon jays (Gymnorhinus cyanocephalus). J. Comp. Psychol. 128, 1-10. doi: 10.1037/a0034627 |
Wilkie, D.M., Summers, R.J., Spetch, M.L., 1981. Effect of delay-interval stimuli on delayed symbolic matching to sample in the pigeon. J. Exp. Anal. Behav. 35, 153-160. doi: 10.1901/jeab.1981.35-153 |
Wirthlin, M., Lima, N.C.B., Guedes, R.L.M., Soares, A.E.R., Almeida, L.G.P., Cavaleiro, N.P., et al., 2018. Parrot genomes and the evolution of heightened longevity and cognition. Curr. Biol. 28, 4001-4008. doi: 10.1016/j.cub.2018.10.050 |
Wood, S.M., Wood, J.N., 2015. A chicken model for studying the emergence of invariant object recognition. Front. Neural Circuits 9, 7. |
Wright, A.A., Cumming, W.W., 1971. Color-naming functions for the pigeon. J. Exp. Anal. Behav. 15, 7-17. doi: 10.1901/jeab.1971.15-7 |
Wright, A.A., Delius, J.D., 2005. Learning processes in matching and oddity: the oddity preference effect and sample reinforcement. J. Exp. Psychol. Anim. Behav. Process. 31, 425-432. doi: 10.1037/0097-7403.31.4.425 |
Wylie, D.R., Pakan, J.M., Gutierrez-Ibanez, C., Iwaniuk, A.N., 2008. Expression of calcium-binding proteins in pathways from the nucleus of the basal optic root to the cerebellum in pigeons. Vis. Neurosci. 25, 701-707. doi: 10.1017/S0952523808080772 |
Xiao, Q., Frost, B.J., 2009. Looming responses of telencephalic neurons in the pigeon are modulated by optic flow. Brain Res. 1305, 40-46. doi: 10.1016/j.brainres.2009.10.008 |
Xue, C., Kramer, L.E., Cohen, M.R., 2021. Dynamic task-belief is an integral part of decision-making. BioRxiv https://doi.org/10.1101/2021.04.05.438491. |
Yang, J., Zhang, C., Wang, S.R., 2005. Comparisons of visual properties between tectal and thalamic neurons with overlapping receptive fields in the pigeon. Brain Behav. Evol. 65, 33-39. doi: 10.1159/000081109 |
Zentall, T.R., Jackson-Smith, P., Jagielo, J.A., Nallan, G.B., 1986. Categorical shape and color coding by pigeons. J. Exp. Psychol. Anim. Behav. Process. 12, 153-159. doi: 10.1037/0097-7403.12.2.153 |
Zentall, T.R., Singer, R.A., Miller, H.C., 2008. Matching-to-sample by pigeons: the dissociation of comparison choice frequency from the probability of reinforcement. Behav. Process. 78, 185-190. doi: 10.1016/j.beproc.2008.01.015 |
Zhao, K., Nie, J., Yang, L., Liu, X., Shang, Z., Wan, H., 2019. Hippocampus-nidopallium caudolaterale interactions exist in the goal-directed behavior of pigeon. Brain Res. Bull. 153, 257-265. doi: 10.1016/j.brainresbull.2019.09.005 |