
Citation: | Hani Amir Aouissi, Mostefa Ababsa, Aissam Gaagai, Zihad Bouslama, Yassine Farhi, Haroun Chenchouni. 2021: Does melanin-based plumage coloration reflect health status of free-living birds in urban environments?. Avian Research, 12(1): 45. DOI: 10.1186/s40657-021-00280-7 |
Ecological functions and processes in urban ecosystems are governed by various human activities. City-adapted and city-exploiting animal species are expected to present certain specific behavioral and physiological traits in comparison to city-avoiders or conspecific individual frequenting less urbanized or rural environments. A trait of high importance, the plumage color polymorphism has been selected as the main study model and was correlated with different morphological and physiological parameters to highlight its importance in determining the possible health status of urban Feral Pigeons (Columba livia) in North African urban habitats.
Different body morphometrics, hematological and hemoparasitic parameters were quantified on free-living Feral Pigeons in urban environments of northern Algeria. Moreover, plumage melanin-based coloration (MBC) was measured and the data collected at the individual scale was correlated with the previous parameters using linear and non-linear modeling approaches.
Plumage MBC scores of the sampled Feral Pigeons ranged between 0.3% and 74.8%. Among the 12 morphological traits measured, body weight, tail length and total length were deemed to be positively correlated with MBC. Darker morphs appeared to have more hemoparasites compared to lighter pigeons. Quite the same observation goes with the immunity but with non-linear trends. The number of monocytes and granulocytes increased with the increase in MBC levels in lighter morphs, while pigeons with high MBC scores exhibited negative relationships between MBC levels and the number of white blood cells.
Despite the existence of a number of studies demonstrating phenotypic directional selection, further studies are undoubtedly necessary to understand in detail the underlying mechanisms in species life-history strategies between differently colored individuals. Findings of this correlative study open exciting perspectives revealing that MBC can be considered a good indicator of and health status and adaptation strategies to changes in urban environments.
Integumentary coloration is essential in avian communication: signalers use coloration to provide information, such as the bearer's physical condition or genetic quality, to receivers (Hill 2006; Senar 2006). Melanins, mainly responsible for black (eumelanins) or reddish and brown (pheomelanin) colors, are considered one of the main pigment classes associated with variations in the physiological and behavioral traits that are typical targets in animal communication. It has been shown that vertebrates with melanin-richer coloration are more aggressive, sexually attractive and resistant to stress than those with melanin-lesser ones (Ducrest et al. 2008). However, compared with the well-studied carotenoid-based coloration, the function of melanin-based traits to their bearers is less understood.
Animals can synthesize melanins from the aromatic amino acids, phenylalanine and tyrosine. Melanization can be highly heritable (Hill and McGraw 2006; Jawor and Breitwisch 2003). In the past, variations in melanin-based traits were believed mainly to be genetically controlled (Bize et al. 2006). However, later studies suggest that these traits could be condition-dependent: factors such as parasitic infections and diet quality can also influence the level of expression of melanin-based signals (e.g., Fargallo et al. 2007; Jacquin et al. 2011). In particular, oxidative stress could play a critical role in regulating melanization (e.g., Roulin et al. 2008). High oxidative stress, which results from the imbalance between the rate of production of reactive oxygen species (including free radicals) by cell metabolism and the state of repair and antioxidant machinery, can induce ageing and reduce life span (Finkel and Holbrook 2000). The process of melanization could reduce the concentration of free radicals, making melanin an important antioxidant (Ducrest et al. 2008). However, the correlation between oxidative stress levels and the coloration of melanin-based traits is still controversial in birds (e.g., Ducrest et al. 2008; Galván and Alonso-Alvarez 2009). In the current study, we examined the correlation between the brightness of black plumage (defined in materials and methods below) and individuals' oxidative stress levels in Himalayan Black Bulbuls (Hypsipetes leucocephalus nigerrimus) to test whether melanin-based plumage could be an indicator of the individuals' physical condition.
To human eyes, melanin-based ornaments are usually just dull colored (i.e. black or brown), and are less varied within and between species than carotenoid-based ornaments (Badyaev and Hill 2000). However, the extra cones and oil drops that birds have make them have better at color discrimination than humans (Griffith et al. 2006; Jawor and Breitwisch 2003; McGraw 2006). Traditionally, avian melanin-based plumage patterns are characterized by patch size or darkness ranked by human eyes (e.g., Bize et al. 2006), but such methods may highly underestimate variations in brightness, and severely hamper our understanding of the functions of melanin-based traits. Fortunately, with the aid of a spectrometer, subtle differences in brightness of melanin-based pigments can be quantified, and results indicate that the variation in melanin-based coloration within and between species can be huge (McGraw et al. 2005).
The Himalayan Black Bulbul is widely distributed in Taiwan's broad-leaf forests at elevations from 100 to 1500 m. Their plumage coloration is entirely melanin-based; black plumage with grey patches on the scapular feathers and remige. It makes the Himalayan Black Bulbul a perfect system to investigate the function of melanin-based signaling. In theory, the process of melanin production should reduce the sensitivity of the stress-regulation processes and result in lower oxidative stress (Ducrest et al. 2008); therefore, we expected a negative correlation between an individual's oxidative stress levels and its black plumage coloration, with brighter individuals (i.e. more melanins) under lower oxidative stress. The results of this study should enhance our knowledge of the role of melanin-based coloration in avian communication.
In total, 18 and 48 Himalayan Black Bulbuls were bought from a pet-shop in Taipei in 2010 and 2011 respectively. Each bird was housed individually in the laboratory. We collected 150 μL blood from each individual for molecular sex typing. A drop of blood, approximately 5 μL, from each bird was used as the blood smear for the oxidative stress test. Each bird's brightness measurement and oxidative stress test were carried out in March of 2010 or 2011, which was the beginning of the breeding season.
Gross DNA was extracted from blood samples with traditional proteinase K digestion followed by LiCl extraction [modified from the procedure of Gemmell and Akiyama (1996)]. Extracted DNA was re-suspended in ddH2O and stored at −20 ℃. Less than 100 ng of genomic DNA was added to 12.5 μL of PCR (polymerase chain reaction) mix containing 0.5 mmol/L of each of the dNTPs, 0.3 μmol/L of each PCR primer (2550F/2718R, Fridolfsson and Ellegren 1999), 10 mmol/L Tric-HCL, 50 mmol/L KCL, 1.5 mmol/L of MgCl2 and 0.4 U of Taq DNA polymerase (Amersham Biosciences). The PCR profile was 94 ℃ for 3 min, followed by 40 cycles of 95 ℃ for 20 s, 46 ℃ for 30 s and 72 ℃ for 40 s, finishing at 72 ℃ for 2 min. The PCR reactions were carried out in iCyclers (Bio-Rad, Hercules, CA, USA). After the PCR reactions, we conducted electrophoresis with 1.2 % agarose gel to determine the birds' sex. We identified eight females and ten males in 2010 and 18 females and 30 males in 2011.
For each individual, the reflectance of eight regions of melanin-based plumage- including the forehead, nape, back, breast, belly, tail, remige and scapular feathers—was measured using an USB2000 spectrometer (Ocean Optics) with a HL2000 deuterium-halogen light source (Ocean Optics). A R600-7-UV/125F probe (Ocean Optics) was held perpendicular to the surface of the feathers with a cylindrical cap at the end to standardize the distance (5 mm) measured and to shield ambient light. To calculate relative reflectance, a white standard (Labsphere) was used. To collect the dark reference, the light source was capped by a black plastic plate. Each part was measured three times to calculate repeatability (repeatability > 90 %, Lessells and Boag 1987). The brightness of each region was defined as the average of total reflectance within the range of 300–700 nm. McGraw et al. (2005) demonstrated that the concentrations of both eumelain and phaeomelanin in feathers were significantly and positively correlated with brightness: a brighter measurement indicates more melanin in the feathers.
We calculated the ratio of lymphocytes (L) to heterocytes (H) in total of 100 leukocytes as a measure of oxidative stress for each individual bulbul following the methods used by Vleck et al. (2000). The blood smear was first dyed with a Wright-Giemsa stain for 3 min and then with 5 % PBS for 70 s. After drying, the numbers of lymphocytes and heterocytes were counted under a microscope at a magnification of 100× with oil immersion, and the H/L ratio calculated. The H/L ratio has been proved to be a good indicator of oxidative stress: higher levels of corticosterones can cause higher oxidative stress and also increase the number of heterocytes in the blood (Davis et al. 2008; Gross and Siegel 1983). Because leukocyte numbers change more slowly in response to stress than corticosterone does (Maxwell 1993), H/L ratios provide a more useful and accurate measure of long-term stress than a single measure of plasma corticosterone (McFarlane and Curtis 1989; Vleck et al. 2000).
Two-way ANOVA was conducted to test whether each individual's oxidative stress level and the brightness of each its body parts differed significantly between years. In these tests, sex, year and the interaction between sex and year were taken into account. Multiple regression was used to test whether the brightness of each body part correlated with oxidative stress (H/L ratio) while taking into account the birds' sex and the interaction between sex and oxidative stress. In the tests, the H/L ratio was log transformed to fit the normal distribution.
Live birds were housed in the Animal Care House of the National Taiwan Normal University and cared for using procedures approved by the Institutional Animal Care and Use Committee of the Department of Life Science (IACUC Approval No 96026).
The average H/L ratio in 2010 was 0.35 ± 0.05 and ranged from 0.1 to 0.4, while the average H/L ratio in 2011 was 1.05 ± 0.13 and ranged from 0.2 to 4.6. Individuals in the 2010 group were under significantly lower oxidative stress (lower H/L ratio) than those in the 2011 group (Fig. 1, two-way ANOVA, F = 15.36, p = 0.0002). The females' average H/L ratio was 0.76 ± 0.15 and the males' was 0.92 ± 0.14; there was no significant difference in the two sexes' H/L ratios (Fig. 1, two-way ANOVA, F = 0.73, p = 0.72).
The brightness of melanin-based colors differed significantly between Himalayan Black Bulbuls in the 2010 and 2011 groups. Members of the 2011 group were brighter (i.e. more melanins) than those of the 2010 group, mainly in belly (two-way ANOVA, Table 1; Ls mean ± SE, 2010 group 4.45 ± 0.31 %, 2011 group 5.34 ± 0.19 %, post hoc (student's t) test, CL −1.61; −0.1) and breast (Table 1; 2010 group 3.22 ± 0.21 %, 2011 group 3.82 ± 0.13 %, post hoc (student's t) test, CL −1.10; −0.11). The same tendencies were observed at the remige and scapulars, although there were significant interactions with two factors, sex and year (two-way ANONA Table 1).
Parts | Source | F Ratio | p |
Back | Sex | 0.50 | 0.483 |
Yeara | 0.47 | 0.495 | |
Year × sex | 0.10 | 0.759 | |
Belly | Sex | 0.01 | 0.921 |
Year | 5.84 | 0.019* | |
Year × sex | 3.58 | 0.063 | |
Breast | Sex | 0.89 | 0.350 |
Year | 6.05 | 0.017* | |
Year × sex | 0.11 | 0.738 | |
Forehead | Sex | 1.84 | 0.181 |
Year | 0.80 | 0.375 | |
Year × sex | 1.71 | 0.196 | |
Nape | Sex | 0.39 | 0.533 |
Year | 1.01 | 0.319 | |
Year × sex | 0.61 | 0.439 | |
Remige | Sex | 2.61 | 0.112 |
Year | 7.95 | 0.007* | |
Year × sex | 5.27 | 0.025* | |
Scapulars | Sex | 3.75 | 0.057 |
Year | 13.58 | 0.001* | |
Year × sex | 4.68 | 0.035* | |
Tail | Sex | 1.95 | 0.168 |
Year | 2.18 | 0.145 | |
Year × sex | 0.70 | 0.406 | |
df = 1 * p < 0.05 aFactor year: including 2010 and 2011 |
The results of multiple regression indicate that brighter breast and scapular feathers might be related to lower oxidative stress: there was a significant negative correlation between the brightness of breast and scapulars and oxidative stress (multiple regressions, Table 2; linear correlation coefficients in breast, rfemale = −0.23, rmale = −0.47; correlations in scapulars, rfemale = −0.54, rmale = −0.23), but not between oxidative stress and the brightness of the other six body parts. However, this relationship only applied in 2011 and not in 2010: the 2010 H/L ratio was not significantly correlated with the brightness of any melanin-based parts (multiple regressions, Table 2).
Parts | Terms | 2010 | 2011 | |||
t ratio | p | t ratio | p | |||
Back | Intercept | 7.25 | < .0001 | 29.49 | < .0001 | |
Sex(F) | 0.25 | 0.808 | 0.83 | 0.413 | ||
Log(H/L ratio)a | −0.05 | 0.964 | −1.14 | 0.262 | ||
Sex(F) × Log(H/L ratio) | −1.46 | 0.166 | −1.49 | 0.144 | ||
Belly | Intercept | 6.09 | < .0001 | 24.15 | < .0001 | |
Sex(F) | −1.37 | 0.194 | 1.53 | 0.134 | ||
Log(H/L ratio) | 0.78 | 0.447 | −1.35 | 0.183 | ||
Sex(F) × Log(H/L ratio) | −0.85 | 0.409 | 0.35 | 0.728 | ||
Breast | Intercept | 9.00 | < .0001 | 24.53 | < .0001 | |
Sex(F) | 0.65 | 0.525 | 0.93 | 0.358 | ||
Log(H/L ratio) | 0.19 | 0.853 | −2.43 | 0.019* | ||
Sex(F) × Log(H/L ratio) | −1.44 | 0.172 | −0.46 | 0.645 | ||
Forehead | Intercept | 3.85 | 0.002 | 17.16 | < .0001 | |
Sex(F) | 1.52 | 0.150 | −0.02 | 0.984 | ||
Log(H/L ratio) | −0.49 | 0.635 | −0.39 | 0.696 | ||
Sex(F) × Log(H/L ratio) | −0.43 | 0.675 | 0.18 | 0.858 | ||
Nape | Intercept | 7.03 | < .0001 | 30.95 | < .0001 | |
Sex(F) | −0.75 | 0.465 | 0.01 | 0.995 | ||
Log(H/L ratio) | 0.70 | 0.497 | −0.62 | 0.539 | ||
Sex(F) × Log(H/L ratio) | 0.18 | 0.858 | −1.2 | 0.238 | ||
Scapulars | Intercept | 8.07 | < .0001 | 40.47 | < .0001 | |
Sex(F) | −2.22 | 0.043* | 0.03 | 0.976 | ||
Log(H/L ratio) | −1.01 | 0.329 | −2.37 | 0.022* | ||
Sex(F) × Log(H/L ratio) | −0.76 | 0.461 | −0.93 | 0.358 | ||
Remige | Intercept | 5.70 | < .0001 | 49.39 | < .0001 | |
Sex(F) | −2.41 | 0.032* | 0.59 | 0.555 | ||
Log(H/L ratio) | −0.67 | 0.515 | −0.28 | 0.782 | ||
Sex(F) × Log(H/L ratio) | −1.60 | 0.133 | −0.78 | 0.440 | ||
Tail | Intercept | 6.23 | < .0001 | 27.93 | < .0001 | |
Sex(F) | 0.31 | 0.759 | 2.1 | 0.042* | ||
Log (H/L ratio) | 0.13 | 0.899 | 0.34 | 0.739 | ||
Sex(F) × Log(H/L ratio) | 1.01 | 0.330 | −0.36 | 0.724 | ||
* p < 0.05 aHeterocyte/lymphocyte ratio log transformed to normalize the distribution |
Our regression analysis for the 2011 sample shows that melanin-based characteristics could be brighter (i.e. more melanin) in individuals that suffered lower oxidative stress. This result is consistent with the work of Ducrest et al. (2008). They reviewed six studies and discovered a significantly negative correlation between the expression of melanin-based characteristics and the level of oxidative stress. This implies that expression of melanin-based traits is condition-dependent and could be a quality cue reflecting an individual's physical condition (Hill and McGraw 2006).
However, individuals in our 2011 sample suffered higher oxidative stress than those in the 2010 sample but had brighter plumage (i.e. more melanins)—a positive correlation, contrasting with the negative correlation found within the 2011 group. Several recent studies also report similar, positive, correlations between oxidative stress and melanin-based coloration (Galván and Alonso-Alvarez 2008; Galván and Alonso-Alvarez 2009; Hõrak et al. 2010), suggesting that an alternative hypothesis about a different interaction between melanin coloration and oxidative stress should be considered in the role of melanin-based signaling.
Glutathione (GSH), another key intracellular antioxidant, has been suggested to inhibit eumelanogenesis and eumelanin-based black ornaments, and might be crucial to the expression of melanin-based traits (Benedetto et al. 1982). GSH is a tripeptide thiol found in virtually all animal cells, and often considered as a vital antioxidant. It functions in the reduction of the disulfide linkages of proteins, in the synthesis of the deoxyribonucleotide precursors of DNA and in the protection of cells against free radicals (Meister 1983). GSH also serves as an agent regulating the process of melanogenesis. Low GSH levels have been associated with the deposition of melanin in bird feathers, whereas high GSH levels inhibit melanogenesis (Galván and Alonso-Alvarez 2008; Galván and Alonso-Alvarez 2009; Hõrak et al. 2010). Hence, GSH might be involved in a trade-off between antioxidants and melanogenesis. We suspect this might be the case in the Black Bulbuls: individuals in 2011 might have had lower GSH than those in 2010, therefore having brighter plumage but higher oxidative stress.
The fact that we only discovered a significant relationship in the 2011 group, not in the 2010 group, might also provide support for the GSH hypothesis. A study in rats suggested that corticosterone could decrease glutathione levels (Patel et al. 2002). In our study, individuals in 2011 suffered higher oxidative stress of those in 2010, a relatively lower level of GSH might be expected in 2011 than in 2010. A lower level of GSH could enhance the melanin concentration or the patch size of individuals' melanin-based ornaments (Galván and Alonso-Alvarez 2008; Galván and Alonso-Alvarez 2009; Hõrak et al. 2010). Therefore the positive correlation between oxidative stress and brightness of melanin-based traits in the 2 years would be expected.
In our study, individuals in 2011 suffered almost three times the oxidative stress of those in 2010; and variations in oxidative stress were larger within the 2011 group. Previous studies have shown that individuals' H/L ratio usually keeps steady until it moves on to a different life-history stage: the individual's H/L ratio could be higher at times during migration (Work et al. 1999), and parasitic infection or oil pollution can raise H/L ratios to four to six times those of controls (Davis et al. 2008). Since we collected all data at the beginning of breeding seasons of 2010 or 2011 and after molting, individuals should been in the same stage of life-history in the 2 years. But unpublished data showed that there were different rates of parasitic infection in the 2 years (Hung collected): a higher percentage of malarial infection in 2011 (37 %) than in 2010 (26 %). Therefore, besides the level of GSH, the rate of malarial infection might be another factor causing different levels of oxidative stress in our study between 2 years. But this requires further investigation.
The status of oxidative stress we test here should not reflect the physical condition in real time or during molting, but is rather the long-term condition of an individual. Such long-term oxidative stress could be affected by many factors: genetic, environmental or different life-history stages (Monaghan et al. 2009). Therefore, Black Bulbuls might be able to use melanin-based coloration to evaluate individual's long-term physical condition. Consequently, the traits might be important in sexual selection or individual assessment in animal aggressive behavior in the Himalayan Black Bulbul. This hypothesis, however, requires further verification.
In summary, we examined the relationship between individuals' oxidative stress levels and expression of melanin-based plumage in Himalayan Black Bulbuls. Our data suggest that melanin-based plumage can reflect individuals' long-term physical condition in certain situations. Therefore we propose that the brightness of melanin-based plumage could have a role in Himalayan Black Bulbuls' communication.
HYH and SHL conceived and designed the experiments, and HYH performed the experiments. All the authors participated in the data analysis and paper writing. Both authors read and approved the final manuscript.
The project was founded by the Population Genetics Lab, Department of Life Science, National Taiwan Normal University. We thank the following for laboratory assistance: C-F Yen, R-W Chu and R–C Lin. We also thank Y-Z Yi and Z-R Hung for helping care for the birds. Specially, we thank A. Watson who provided English editing.
The authors declare that they have no competing interests
Aouissi HA, Belabed AI, Bouslama Z. Doves' mapping and inventory into the urban sites of Annaba (Northeastern of Algeria). Adv Environ Biol. 2015;12: 328–38.
|
Aouissi HA. Écologie des espèces aviaires dans le tissu urbain de la ville de Annaba. Doctoral Thesis. Annaba: University of Annaba; 2016.
|
Berry JL. Urbanization. The earth as transformed by human action. In: Turner II BL, Clark WC, Kates RW, Richards JF, Mathews JT, Meyer WB, editors. The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years. Cambridge: Cambridge University Press, UK; 1990. p. 103–19.
|
Borras A, Pascual J, Senar JC. What do different bill measures measure and what is the best method to use in granivorous birds? J Field Ornithol. 2000;71: 606–11.
|
Brazil M. Birds of east Asia: China, Taiwan, Korea, Japan, and Russia. Princeton, New Jersey: Princeton University Press; 2009.
|
Campbell TW. Avian hematology and cytology. 2nd ed. Ames, IA: Iowa State University Press; 1995.
|
Chanarin I. Hematology: principles and procedures. J Clin Pathol. 1984;37: 1419.
|
Chedad A, Bendjoudi D, Beladis I, Guezoul O, Chenchouni H. A comprehensive monograph on the ecology and distribution of the House bunting (Emberiza sahari) in Algeria. Front Biogeogr. 2021;13: e47727.
|
Chenchouni H. Contribution à l'étude de la bio-écologie de la Cigogne blanche (Ciconia ciconia) dans la région de Batna (Nord-est algérien). Doctoral Thesis. Algeria: University of Batna; 2017a.
|
Combes C. Parasitism: the ecology and evolution of intimate interactions. Chicago: University of Chicago Press; 2001.
|
Davidsohn I, Henry JB. Clinical diagnosis by laboratory methods. 15th ed. Philadelphia, Pa: W. B. Saunders Co; 1974.
|
de Godoi FSL, Nishi SM, de Jesus Pena HF, Gennari SM. Toxoplasma gondii: diagnosis of experimental and natural infection in pigeons (Columba livia) by serological, biological and molecular techniques. Rev Bras Parasitol Vet. 2010;19: 238–43.
|
Eck S, Fiebig J, Fiedler W, Heynen I, Nicolai B, Töpfer T, et al. Measuring birds/vögel vermessen. Germany: Deutsche Ornithologen-Gesellschaft; 2011.
|
Emaresi G, Henry I, Gonzalez E, Roulin A, Bize P. Sexand melanism-specific variations in the oxidative status of adult tawny owls in response to manipulated reproductive effort. J Exp Biol. 2016;219: 73–9.
|
George EL, Panos A. Does a high WBC count signal infection? Nursing. 2005;35: 20–1.
|
Hart BL. Behavioural defence. In: Clayton DH, Moore J, editors. Host-parasite evolution: general principle and avian models. Oxford: Oxford University Press; 1997. p. 59–77.
|
Hawkey CM, Dennett TB. A colour atlas of comparative veterinary haematology. London: Wolfe Publishing; 1989.
|
Hill GE, McGraw KJ. Bird colouration: function and evolution. Cambridge: Harvard University Press; 2006.
|
Jacquin L. Coloration mélanique et stratégies d'histoire de vie chez le pigeon biset urbain. Doctoral Thesis. University of Paris 6; 2011.
|
Jarry G, Baillon F. Hivernage de la tourterelle des bois (Streptopelia turtur) au Sénégal: étude d'une population dans la région de Nianing. Paris: Report of CRBPO; 1991.
|
Johnston RF, Janiga M. Feral pigeons. Vol. 4. Oxford: Oxford University Press; 1995.
|
Kark S, Iwaniuk A, Schalimtzek A, Banker E. Living in the city: can anyone become an 'urban exploiter'? J Biogeogr. 2007;34: 638–51.
|
Luniak M. Synurbization – adaptation of animal wildlife to urban development. In: Shaw WW, Harris K, Vandruff L, editors. Proceedings of the 4th international symposium on urban wildlife conservation. Tucson, Arizona: University of Arizona; 2004. p. 50–5.
|
Madans JH, Webster KM. Health surveys. In: Wright JD, editor. International encyclopedia of the social and behavioral sciences. 2nd ed. Orlando: University of Central Florida; 2015. p. 725–30.
|
Marzluff JM. Worldwide urbanization and its effects on birds. In: Marzluff JM, Bowman R, Donnelly R, editors. Avian ecology and conservation in an urbanizing world. Boston: Springer; 2001. p. 19–47.
|
Périquet JC. Le Pigeon: races, élevage et utilisation, reproduction, hygiène et santé. Collection Les cahiers de l'élevage, Ed. Rustica, Paris; 1998.
|
Rasmussen PC, Anderton JC. Birds of south Asia: the Ripley guide: attributes and status. 1st Edn, Vol. 2. Washington and Barcelona: Smithsonian Institution and Lynx Edicions; 2005.
|
Stöppler MC, Shiel WC, Credo Reference (Firm), WebMD (Firm). Webster's new world medical dictionary, 3rd ed.; Redo Reference: Boston, MA, USA; Wiley: Hoboken, NJ, USA. 2014; 480 p.
|
Parts | Source | F Ratio | p |
Back | Sex | 0.50 | 0.483 |
Yeara | 0.47 | 0.495 | |
Year × sex | 0.10 | 0.759 | |
Belly | Sex | 0.01 | 0.921 |
Year | 5.84 | 0.019* | |
Year × sex | 3.58 | 0.063 | |
Breast | Sex | 0.89 | 0.350 |
Year | 6.05 | 0.017* | |
Year × sex | 0.11 | 0.738 | |
Forehead | Sex | 1.84 | 0.181 |
Year | 0.80 | 0.375 | |
Year × sex | 1.71 | 0.196 | |
Nape | Sex | 0.39 | 0.533 |
Year | 1.01 | 0.319 | |
Year × sex | 0.61 | 0.439 | |
Remige | Sex | 2.61 | 0.112 |
Year | 7.95 | 0.007* | |
Year × sex | 5.27 | 0.025* | |
Scapulars | Sex | 3.75 | 0.057 |
Year | 13.58 | 0.001* | |
Year × sex | 4.68 | 0.035* | |
Tail | Sex | 1.95 | 0.168 |
Year | 2.18 | 0.145 | |
Year × sex | 0.70 | 0.406 | |
df = 1 * p < 0.05 aFactor year: including 2010 and 2011 |
Parts | Terms | 2010 | 2011 | |||
t ratio | p | t ratio | p | |||
Back | Intercept | 7.25 | < .0001 | 29.49 | < .0001 | |
Sex(F) | 0.25 | 0.808 | 0.83 | 0.413 | ||
Log(H/L ratio)a | −0.05 | 0.964 | −1.14 | 0.262 | ||
Sex(F) × Log(H/L ratio) | −1.46 | 0.166 | −1.49 | 0.144 | ||
Belly | Intercept | 6.09 | < .0001 | 24.15 | < .0001 | |
Sex(F) | −1.37 | 0.194 | 1.53 | 0.134 | ||
Log(H/L ratio) | 0.78 | 0.447 | −1.35 | 0.183 | ||
Sex(F) × Log(H/L ratio) | −0.85 | 0.409 | 0.35 | 0.728 | ||
Breast | Intercept | 9.00 | < .0001 | 24.53 | < .0001 | |
Sex(F) | 0.65 | 0.525 | 0.93 | 0.358 | ||
Log(H/L ratio) | 0.19 | 0.853 | −2.43 | 0.019* | ||
Sex(F) × Log(H/L ratio) | −1.44 | 0.172 | −0.46 | 0.645 | ||
Forehead | Intercept | 3.85 | 0.002 | 17.16 | < .0001 | |
Sex(F) | 1.52 | 0.150 | −0.02 | 0.984 | ||
Log(H/L ratio) | −0.49 | 0.635 | −0.39 | 0.696 | ||
Sex(F) × Log(H/L ratio) | −0.43 | 0.675 | 0.18 | 0.858 | ||
Nape | Intercept | 7.03 | < .0001 | 30.95 | < .0001 | |
Sex(F) | −0.75 | 0.465 | 0.01 | 0.995 | ||
Log(H/L ratio) | 0.70 | 0.497 | −0.62 | 0.539 | ||
Sex(F) × Log(H/L ratio) | 0.18 | 0.858 | −1.2 | 0.238 | ||
Scapulars | Intercept | 8.07 | < .0001 | 40.47 | < .0001 | |
Sex(F) | −2.22 | 0.043* | 0.03 | 0.976 | ||
Log(H/L ratio) | −1.01 | 0.329 | −2.37 | 0.022* | ||
Sex(F) × Log(H/L ratio) | −0.76 | 0.461 | −0.93 | 0.358 | ||
Remige | Intercept | 5.70 | < .0001 | 49.39 | < .0001 | |
Sex(F) | −2.41 | 0.032* | 0.59 | 0.555 | ||
Log(H/L ratio) | −0.67 | 0.515 | −0.28 | 0.782 | ||
Sex(F) × Log(H/L ratio) | −1.60 | 0.133 | −0.78 | 0.440 | ||
Tail | Intercept | 6.23 | < .0001 | 27.93 | < .0001 | |
Sex(F) | 0.31 | 0.759 | 2.1 | 0.042* | ||
Log (H/L ratio) | 0.13 | 0.899 | 0.34 | 0.739 | ||
Sex(F) × Log(H/L ratio) | 1.01 | 0.330 | −0.36 | 0.724 | ||
* p < 0.05 aHeterocyte/lymphocyte ratio log transformed to normalize the distribution |