Benedictus Freeman, Daniel Jiménez-García, Benjamin Barca, Matthew Grainger. 2019: Using remotely sensed and climate data to predict the current and potential future geographic distribution of a bird at multiple scales: the case of Agelastes meleagrides, a western African forest endemic. Avian Research, 10(1): 22. DOI: 10.1186/s40657-019-0160-y
Citation: Benedictus Freeman, Daniel Jiménez-García, Benjamin Barca, Matthew Grainger. 2019: Using remotely sensed and climate data to predict the current and potential future geographic distribution of a bird at multiple scales: the case of Agelastes meleagrides, a western African forest endemic. Avian Research, 10(1): 22. DOI: 10.1186/s40657-019-0160-y

Using remotely sensed and climate data to predict the current and potential future geographic distribution of a bird at multiple scales: the case of Agelastes meleagrides, a western African forest endemic

More Information
  • Corresponding author:

    Benedictus Freeman, benedictusfreeman@gmail.com

  • Received Date: 16 Dec 2018
  • Accepted Date: 26 May 2019
  • Available Online: 24 Apr 2022
  • Publish Date: 09 Jun 2019
  • Background 

    Understanding geographic distributions of species is a crucial step in spatial planning for biodiversity conservation, particularly as regards changes in response to global climate change. This information is especially important for species of global conservation concern that are susceptible to the effects of habitat loss and climate change. In this study, we used ecological niche modeling to assess the current and future geographic distributional potential of White-breasted Guineafowl (Agelastes meleagrides) (Vulnerable) across West Africa.

    Methods 

    We used primary occurrence data obtained from the Global Biodiversity Information Facility and national parks in Liberia and Sierra Leone, and two independent environmental datasets (Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index at 250 m spatial resolution, and Worldclim climate data at 2.5′ spatial resolution for two representative concentration pathway emissions scenarios and 27 general circulation models for 2050) to build ecological niche models in Maxent.

    Results 

    From the projections, White-breasted Guineafowl showed a broader potential distribution across the region compared to the current IUCN range estimate for the species. Suitable areas were concentrated in the Gola rainforests in northwestern Liberia and southeastern Sierra Leone, the Tai-Sapo corridor in southeastern Liberia and southwestern Côte d’Ivoire, and the Nimba Mountains in northern Liberia, southeastern Guinea, and northwestern Côte d’Ivoire. Future climate-driven projections anticipated minimal range shifts in response to climate change.

    Conclusions 

    By combining remotely sensed data and climatic data, our results suggest that forest cover, rather than climate is the major driver of the species’ current distribution. Thus, conservation efforts should prioritize forest protection and mitigation of other anthropogenic threats (e.g. hunting pressure) affecting the species.

  • Species with large brains have been suggested to be particularly successful as reflected by establishment success when introduced to oceanic islands (Sol and Lefebvre 2000; Sol et al. 2002, 2005). If large brains facilitate invasions, we should expect that species with large brains for their body size would be more successful in establishing populations in urban environments. Four studies have investigated this suggestion. First, Kark et al. (2007) found no significant difference in relative brain mass after adjusting for body mass in a small sample of bird species in Jerusalem. Second, Carrete and Tella (2011) showed that bird species with large brains for their body size were more likely to successfully invade urban environments in Argentina. Third, Evans et al. (2011) did not find that interspecific differences in brain size accounted for differences in population density between rural and urban habitats. Finally, Maklakov et al. (2011) showed that bird families that had a larger fraction of species breeding in city centers (according to Croci et al. 2008) had large brains for their body size. Thus two studies suggest that mean brain mass, adjusted for the effects of body mass, predict different aspects of urban invasion. However, these analyses did not address whether mean brain mass or a third variable correlated with mean brain mass accounted for the relationship between successful urban invasion and brain size. Here we explicitly test if mean brain size, variance in brain size or skewness in brain size account for differences in urbanization.

    Large brains are more costly to produce and maintain than small brains because of their antioxidant requirements (e.g. Bains and Shaw 1997; Hoffman and Heinz 1998; Sewalk et al. 2001), and the high rate of energy use by brain tissue (Laughlin et al. 1998; Nilsson 1999; Ames 2000; Laughlin 2001). Therefore, more nutrients and energy are allocated to a large brain (Laughlin et al. 1998; Nilsson 1999; Ames 2000; Laughlin 2001), development of a large brain produces more free radicals (e.g. Bains and Shaw 1997; Hoffman and Heinz 1998; Sewalk et al. 2001), and a large brain may take longer time to develop (Ricklefs 2004). Thus developing a large brain may increase the risk that individuals encounter periods with inadequate food or nutrient supply such as antioxidants. A recent study of brain size in birds exposed to radiation from Chernobyl showed a surplus of individuals with small brains in areas with high levels of radiation (Møller et al. 2011). Because ionizing radiation produces large amounts of free radicals, these are eliminated by antioxidants that are generally strongly limiting in radioactively contaminated areas (Møller et al. 2005). Because normal brain development produces large amounts of free radicals, animals living in radioactively contaminated areas suffer from reduced brain development (Møller et al. 2011). Studies of brain size (Nyagu and Loganovsky 1998) and brain function in humans exposed to radiation (Almond et al. 2007; Heiervang et al. 2010) have shown a surplus of individuals with small brains and poor brain function. Therefore, an environment characterized by high production of free radicals and high use and/or low availability of antioxidants, such as radioactively contaminated areas, may cause inferior brain development, leading to greater variances and more left skewed frequency distributions of brain size.

    The objectives of this study were to test (1) if mean, variance and skew in brain mass explained variation in successful urbanization, as expected if species with large brains, species with homogeneous brain sizes and species with frequency distributions of brain mass without skew facilitate invasion of urban habitats; (2) if mean, variance and skew in brain mass have increased from the ancestral rural to the current urban populations of the same species, as expected if urban habitats provide food of low quality; and (3) if mean, variance and skew in brain mass in urban populations have changed with time since urbanization, as expected if urbanization has led to local adaptation to urban environments. To this end we exploited a unique dataset on brain mass of birds collected during the last 40 years.

    Brain mass was derived from post-mortem examinations of dead birds that had been frozen and measured by JE on a precision balance to the nearest 0.001 g, blindly with respect to the hypotheses under test. A detailed description of the standardized preparation procedure that relies on extraction and weighing of the entire brain can be found on the web site of JE (http://www.birdresearch.dk/). Almost all specimens came from Southern Denmark, and hence urban and rural birds originated from the same general area. The general public delivered all specimens, and there is no reason to believe that there is any bias in the data. In brief, JE during standard preparation of bird skins removed the brain from the skull and placed it on a piece of paper on the precision balance. All brains were carefully inspected for any damage due to collision or other causes, and only undamaged brains were included in the samples. Body mass was recorded on a precision balance to the nearest 0.1 g. We assumed that storage and preparation effects on measurements only resulted in random noise in the data, although all specimens were prepared in the same way by the same person. Mean brain sizes for different species were significantly positively correlated with those reported in the literature (e.g. Crile and Quiring 1940; Portmann 1947; Armstrong and Bergeron 1985; Mlikovsky 1990), providing a large and highly significant repeatability (F = 119.37, d.f. = 34, 206, p < 0.001; R = 0.980). This justifies that the data are reliably reflecting true brain size. The current database used for the present study consisted of brain mass for 2721 individuals, given the requirement that all individuals should belong to species that allowed estimates of mean, standard deviation and skewness. Sample sizes differed among analyses due to missing values for some species (for example, information on whether a species was urbanized or not was available for more species than which year a species was urbanized). Therefore, we report sample sizes for all analyses in the tables.

    We defined urban areas as built-up areas with continuous one-family houses and multi-storey buildings with interspersed areas of roads, parks and gardens. In contrast, nearby rural areas consisted of farmland, forests, moors, lakes and other habitats with scattered houses and farms. This operational definition is similar to that provided by Klausnitzer (1989), Gliwicz et al. (1994) and Stephan (1999). We used two criteria for defining successful urbanization: (1) Higher population density of breeding birds in urban than in nearby rural habitats, and (2) timing of urbanization (Møller et al. 2012).

    Higher population density of breeding birds in urban than in rural habitats. We used extensive published information on the population density of breeding birds to determine whether a species could be considered to be urbanized or not, using Cramp and Perrins (1977-1994) and (Glutz von Blotzheim and Bauer 1966-1997) as sources. These two main handbooks on the birds of the Western Palearctic have collated information in a similar, consistent and stringent way, allowing comparison among species. This information was combined with our own experience and that of colleagues working on urban birds. For a species to be classified as urbanized it should fulfill two criteria: (1) It should have populations breeding inside towns and cities, and (2) population densities in towns and cities should in at least one city be higher in urban than in nearby rural habitats. This resulted in a total of 63 urbanized species out of the 526 species of breeding birds.

    Timing of urbanization. Bird species that have been urbanized since long will have spent more generations in urban areas, and hence will have had longer time to adapt to this novel environment. We estimated the approximate year of urbanization in cities in Denmark as described in detail by Møller(2008, 2009, 2010). Thus information on brain size and urbanization originated from the same area. Timing of urbanization will result from colonization followed by establishment, or extinction and perhaps subsequent re-colonization. Obviously, there is no information on such processes, nor is there empirical information about the development of urban population sizes since colonization. Here we assume that colonization of urban environments can be approximated from observations by keen ornithologists who habitually closely follow changes in composition and distribution of birds in the neighborhood where they live. Any heterogeneity in colonization processes or increase in population size will cause noise in the data and ultimately make it more difficult to discern any patterns. We estimated the year when different species became urbanized using two different approaches. First, we asked keen amateur ornithologists to state when different species of birds were first recorded breeding in urban areas. An approximate year of urbanization was recorded, with a conservative value of 1950 assigned to species that were known to breed in urban habitats before the observers started watching birds. Second, we recorded timing of invasion of urban environments from old published records going back the start of the 1900's. If the year of urbanization was before records reported in these sources, we assigned 1850 as the year of urbanization. Although urbanization is likely to have occurred much earlier for many species that are closely associated with humans such as house sparrow Passer domesticus and rock pigeon Columba livia, these estimates are conservative. See Møller(2008, 2009, 2010) and Møller et al. (2012) for a detailed description of this approach and for statistically significant cross-validation among observers, cities and methods. All data are reported in Additional file 1: Tables S1 and S2.

    We used log10-transformed brain mass for different species in the statistical analyses. We tested if brain mass was positively correlated with a standard measure of skeletal body size (tarsus length), as would be expected if there was allometry. We found only very weak evidence of allometry because log10-transformed brain mass only increased weakly with log10-transformed tarsus length in a model that also included species as a random factor (partial effect of tarsus length in an analysis of all individuals with information on brain mass and tarsus length: F = 23.29, d.f. = 1, 3333, r2 = 0.007, p < 0.0001, partial r = 0.08). Therefore, we did not consider this marginal effect of allometry in the subsequent analyses. However, the conclusions of the subsequent analyses reported in the Results do not change if tarsus length was entered as a covariate.

    We calculated mean, standard deviation and skewness in brain mass for each species, but also separately for samples from rural and urban populations of the same species and used these estimates in the subsequent analyses. We did not use coefficient of variation because it is a composite variable that depends on both mean and standard deviation. Hence, the use of coefficient of variation would make interpretation difficult. Standard deviation generally increases with mean, and this problem was addressed by inclusion of both variables as predictors. We analyzed whether presence or absence of urbanization was related to body mass, brain mass, SD in brain mass and skewness in brain mass in a phylogenetic multiple regressions weighted by sample size (Table 1). In a second series of intraspecific analyses we used paired t-tests to analyze if rural and urban mean brain mass, SD in brain mass and skewness in brain mass differed significantly (Table 2). Finally, we tested whether year of urbanization was related to body mass, brain mass, SD in brain mass and skewness in brain mass in a phylogenetic multiple regressions weighted by sample size (Table 3). Although body mass was correlated with mean brain mass and standard deviation in brain mass, multicollinearity as assessed by the Variance Inflation Factor (VIF) did not bias parameter estimates in the models. VIF ranged between 1 and 3, i.e. well below the commonly accepted threshold of 5-10 that indicates serious collinearity problems (McClave and Sincich 2003).

    Table  1.  Phylogenetic analyses of urbanization (yes, no) in relation to body mass and the three first moments of brain mass for 108 species of birds with the number of independent evolutionary events being 28
    Variable F p Slope SE Effect size
    Body mass 0.06 0.95 0.001 0.024 0.05
    Brain mass 3.00 0.095 0.026 0.015 0.31
    SD brain mass 5.22 0.031 0.052 0.023 0.40
    Skewness brain mass 10.20 0.0036 -0.248 0.078 0.52
    The models were weighted by sample size. Effect size was estimated as Pearson's product-moment correlation coefficient.
     | Show Table
    DownLoad: CSV
    Table  2.  Mean (SE) for brain mass, SD in brain mass and skewness in brain mass for matched rural and urban populations of 71 species of birds
    Variable Rural mean Rural SE Urban mean Urban SE t p Effect size
    Mean 1.799 1.119 0.807 1.118 0.858 0.39 0.103
    SD 0.176 1.109 0.185 1.108 0.697 0.49 0.084
    Skewness 0.157 0.110 -0.288 0.104 -2.756 0.0075 0.315
    The t-test is a paired t-test for the difference between rural and urban populations. The models were weighted by sample size. Effect size was estimated as Pearson's product-moment correlation coefficient.
     | Show Table
    DownLoad: CSV
    Table  3.  Phylogenetic analysis of year when different species of birds became urbanized in relation to body mass and the first three moments of brain mass
    Variable Sum of squares d.f. F p Estimate SE Effect size
    Body mass 6578.35 1 1.55 0.21 27.69 22.24 0.12
    Brain mass 314.30 1 0.07 0.79 10.57 38.86 0.03
    SD in brain mass 66134.38 1 15.58 0.0001 -63.70 16.14 0.36
    Skewness in brain mass 74147.01 1 17.46 < 0.0001 12.17 2.91 0.38
    Error 437295.56 103
    The model had the statistics F = 12.89, d.f. = 4, 103, r 2 = 0.11, p < 0.0001. The model was weighted by sample size. Effect size was estimated as Pearson's product-moment correlation coefficient.
     | Show Table
    DownLoad: CSV

    Most statistical analyses assume that data points provide equally precise information about the deterministic part of total process variation, i.e. the standard deviation of the error term is constant over all values of the predictor variable (Sokal and Rohlf 1995). Garamszegi and Møller (2010) showed that bias due to variation in sample size is as large a problem in comparative analyses as considering species as statistically independent observations. If this assumption of even sampling effort is violated, weighting each observation by sampling effort allows the use of all data, giving each datum a weight that reflects its degree of precision due to sampling effort (Draper and Smith 1981; Neter et al. 1996; Garamszegi and Møller 2010). This procedure will also allow both rare and common species to be included and hence avoid any bias in sampling due to rarity. We weighted comparative statistical models by sample size, estimating weights for each contrast by calculating the mean sample size for the taxa immediately subtended by that node in the phylogeny (Møller and Nielsen 2007). Thus if sample size for two branches was 5 and 10, respectively, the sample size at the node connecting these two species and hence the weight was (5 + 10) / 2 = 7.5.

    We evaluated the magnitude of associations between predictor and response variables using effect sizes estimated as Pearson's product-moment correlation coefficient based on the standard conversion of F-statistics into Pearson's r (Rosenthal 1994). Cohen (1988) proposed explicit criteria for judging whether effects are small (Pearson r = 0.10, explaining 1% of the variance), intermediate (r = 0.30, 9% explaining of the variance) or large (r = 0.50, explaining 25% of the variance), and we adopt these criteria here.

    We analyzed the relationship between urbanization and the three first moments (mean, variance, skew) of brain mass and body mass, but also the relationship between year of urbanization and the three moments of brain mass using a phylogenetic approach to control statistically for the fact that observations for different species are not statistically independent (Felsenstein 1985). We calculated statistically independent linear contrasts as implemented in the Apple Macintosh-based software CAIC v2.6.9, using the CRUNCH algorithm for continuous variables and the BRUNCH algorithm for discrete variables (Purvis and Rambaut 1995). We constructed a composite phylogeny of all species in our database, based on Davis (2008). The phylogeny is shown in Additional file 1: Figure S1. All branches were assigned the same length although analyses performed assuming uneven branch lengths produced similar results (details not shown). Deleting contrasts with extreme residuals to test for robustness of the conclusions (Purvis and Rambaut 1995) did not change the results. Contrasts were analyzed by forcing regressions through the origin, because the dependent variable is not expected to have changed if there is no change in the independent variable (Harvey and Pagel 1991). All analyses were made with JPM version 10.0 (SAS Institute Inc 2012).

    Species that have become urbanized differed from non-urbanized species by being more variable in brain mass (as reflected by the standard deviation) and having a higher degree of left skewed brain mass than non-urbanized species (Table 1; Figure 1A and B), with effect sizes being intermediate to large. In contrast, body mass and mean brain mass were not significant predictors of urbanization (Table 1).

    Figure  1.  Box plots of log 10 -transformed standard deviation and skewness in brain mass in relation to whether a bird species was urbanized or not.
    (A) Box plots of log10-transformed standard deviation in brain mass in relation to whether a bird species was urbanized or not. (B) Box plots of skewness in brain mass in relation to whether a bird species was urbanized or not. Box plots show median, quartiles, 5- and 95-percentiles and extreme observations.

    The only significant difference in brain mass between rural and urban populations of the same species was a higher degree of left skew in urban populations (Table 2; Figure 2). The relationship between the other two moments of brain mass and urban or rural habitat had small effect sizes and were not significant (Table 2).

    Figure  2.  Box plot of skewness in brain mass in rural and urban populations of the same species of birds.
    The box plot shows median, quartiles, 5- and 95-percentiles and extreme observations.

    Time since urbanization was significantly negatively related to standard deviation in brain mass, and degree of left skew increased with time since urbanization with an intermediate to large effect size (Table 3; Figure 3A and B). In contrast, the relationship for mean brain mass and time since urbanization was not statistically significant (Table 3).

    Figure  3.  Standard deviation in brain mass and skewness in brain mass in relation to year of urbanization.
    Standard deviation (A) and (B) skewness were adjusted for the other predictor variables in Table 3. The lines are the linear regression lines. Observations are species-specific values.

    Bird species that became urbanized had greater variance and less skew in brain mass compared to species that remained rural, while there was no significant difference in body mass or mean brain mass for the two categories of species. There were also significantly greater skew in frequency distributions of brain mass in urban compared to rural populations of the same species. Variance in brain mass decreased and the degree of left skew in brain mass increased with time since urbanization. These findings imply that aspects of brain size differed between species that successfully invaded urban areas and species that remained rural, but also that frequency distributions of brain size diverged between rural and urban populations of the same species following initial urbanization.

    Previous studies of brain size and urbanization have either compared the fraction of species in different families that were urbanized in relation to relative brain size (Maklakov et al. 2011), or the relationship between degree of urbanization and relative brain size in different species (Kark et al. 2007; Carrete and Tella 2011; Evans et al. 2011). Here we analyzed the three first moments (mean, standard deviation, skewness) of brain size and invasion of urban habitats based on 108 species. While standard deviation and skewness in brain mass predicted urbanization, there was no evidence that mean brain mass or body mass were significant predictors. These novel findings arise from the broader range of moments included in the present analyses compared to those in previous publications.

    The present study is the first to address whether urbanization is associated with divergence in relative brain size between neighboring populations inhabiting rural and urban habitats. Urban populations have diverged genetically from nearby rural populations, and different urban habitats also show significant genetic divergence (Fulgione et al. 2000; Rutkowski et al. 2005; Baratti et al. 2009; Evans et al. 2009; Björklund et al. 2010). A higher degree of left skew in brain mass in urban populations compared to nearby rural populations of the same species suggests that urban habitats may constitute inferior habitats for normal brain development or that urban habitats allow for the survival of a broader spectrum of phenotypes. This hypothesis is supported by the fact that levels of vitamin E are considerably lower in urban than in rural populations of the same species (Møller et al. 2010). This divergence in vitamin E levels between rural and urban habitats increased with time since urbanization and the number of generations in urban environments (Møller et al. 2010). An alternative explanation is that a high degree of left skew in brain mass in urban compared to rural habitats reflects less intense selection against individuals with small brains in urban environments. This hypothesis is unlikely, given that urban birds that had fallen prey to cats had lower levels of vitamin E in the liver than non-prey of the same species (Møller et al. 2010), and that lower levels of vitamin E were associated with development of small brains (Møller et al. 2011).

    Brain size of birds became more variable and more left skewed with time since urbanization (Table 3). These two effects were statistically independent (Table 3), suggesting that a larger variance was not a simple consequence of left skewed frequency distributions. Therefore, the greater variance in brain size since urbanization is consistent with the a priori prediction that urban populations become adapted to diverse urban habitats (Møller 2010, 2011). The higher degree of left skew in brain mass in urban habitats suggests that quality or quantity of food in urban environments does not allow all individuals to develop normal sized brains. Experimental studies based on variation in quality of food support this assumption (Bonaparte et al. 2011). Because normal brain development requires large amounts of antioxidants, the low levels of vitamin E in livers of urban compared to rural birds (Møller et al. 2010) may cause a large fraction of individuals developing small-sized brains.

    Variance and skewness in brain size of birds predicted initial probability of invasion of urban habitats, and variance and skewness in brain size subsequently changed as species became adapted to the urban environment. However, there was no evidence that mean brain mass played a role in any of these processes.

    Additional file 1: Table S1. Summary information on whether of not bird species were urbanized (0 - no, 1 - yes), year when the species was urbanized (species not yet urbanized were recorded as 2010), log brain mass, log SD in brain mass, skewness in brain mass, log body mass and sample size. Table S2. Summary information on log brain mass, log SD in brain mass, skewness in brain mass and sample size for rural and urban populations of different species of birds. Figure S1. Phylogenetic relationships among species of birds used in the study of brain size and urbanization. See Methods for further details.

    The authors declare that they have no competing interests.

    JE measured brain sizes. APM analyzed the data and wrote the manuscript. Both authors read and approved the final manuscript.

  • Allport G. The status and conservation of threatened birds in the Upper Guinea forest. Bird Conserv Int. 1991;1:53-74.
    Baker DJ, Hartley AJ, Burgess ND, Butchart SHM, Carr JA, Smith RJ, Belle E, Willis SG. Assessing climate change impacts for vertebrate fauna across the West African protected area network using regionally appropriate climate projections. Divers Distrib. 2015;21:991-1003.
    Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model. 2011;222:1810-9.
    Brown JL. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol. 2014;5:694-700.
    Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc B. 2015;370:20140135.
    Carr JA, Hughes AF, Foden WB. A climate change vulnerability assessment of West African species. Cambridge: Technical Report, UN Environment World Conservation Monitoring Centre; 2014.
    Chapman AD. Principles of data cleaning-primary species and species occurrene data, version 1.0. Copenhagen: Report for the Global Biodiversity Information Facility. (2005).
    Cobos ME, Peterson AT, Barve N, Osorio-Olvera L. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ. 2019;7:e6281.
    Davies AG. The Gola forest reserves, Sierra Leone. Wildlife conservation and forest management. Gland: International Union for Conservation of Nature and Natural Resources; 1987.
    Díaz S, Pascual U, Stenseke M, Martín-López B, Watson RT, Molnár Z, Hill R, Chan KMA, Baste IA, Brauman KA, et al. Assessing nature's contributions to people. Science. 2018;359:270-2.
    Didan K, Munoz AB, Solano R, Huete A. MODIS vegetation index user's guide (MOD13series). Vegetation Index and Phenology Lab, The University of Arizona; 2015. p. 1-38.
    Dowsett-Lemaire F, Dowsett RJ. The avifauna of the proposed Kyabobo National Park in eastern Ghana. Malimbus. 2007;29:61-88.
    Eastman JR. Accessed in TerrSet version, 18.07. Worcester: Clark Labs, Clark University; 2015.
    ESRI. ArcGIS Release 10.5.1. Redlands: Environmental Systems Research Institute; 2017.
    Francis IS, Penford N, Gartshore ME, Jaramillo A. The White-breasted Guineafowl Agelastes meleagrides in Taï National Park, Côte d'Ivoire. Bird Conserv Int. 1992;2:25-60.
    Freeman B, Roehrdanz PR, Peterson AT. Modeling endangered mammal species distributions and forest connectivity across the humid Upper Guinea lowland rainforest of West Africa. Biodivers Conserv. 2019a;28:671-85.
    Freeman B, Danjuma DF, Molokwu-Odozi M. Status of globally threatened birds of Sapo National Park, Liberia. Ostrich. 2019b;90:19-24.
    Fuller RA, Garson PJ. Pheasants: status survey and conservation action plan 2000‒2004. UK: IUCN; 2000.
    GBIF (Global Biodiversity Information Facility Database). GBIF occurrence download. (2017). Accessed 28 Nov 2017.
    Gocic M, Trajkovic S. Spatiotemporal characteristics of drought in Serbia. J Hydrol. 2014;510:110-23.
    Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, et al. Predicting species distributions for conservation decisions. Ecol Lett. 2013;16:1424-35.
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:1965-78.
    Huete A, Justice C, Van Leeuwen W. MODIS vegetation index (MOD13). Algorithm Theor Basis Doc. 1999;3:213.
    Hurvich CM, Tsai C-L. Regression and time series model selection in small samples. Biometrika. 1989;76:297-307.
    IPBES. Assessment report on biodiversity and ecosystem services for Africa. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (2018).
    IUCN. The IUCN red list of threatened species. (2018).
    Janes T, Hartley A. Regional climate projections for West Africa. Cambridge: Technical Report, UN Environment World Conservation Monitoring Centre; 2010.
    Klop E, Lindsell JA, Siaka AM. The birds of Gola Forest and Tiwai Island, Sierra Leone. Malimbus. 2010;32:33-58.
    Li R, Tian H, Li X. Climate change induced range shifts of Galliformes in China. Integr Zool. 2010;5:154-63.
    Ludwig GX, Alatalo RV, Helle P, Lindén H, Lindström J, Siitari H. Short-and long-term population dynamical consequences of asymmetric climate change in black grouse. Phil Trans R Soc B. 2006;273:2009-16.
    Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah LEE. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol. 2006;20:538-48.
    Manjunath Aradhya VN, Niranjan SK, Hemantha Kumar G. Probabilistic neural network based approach for handwritten character recognition. Int J Comput Commun. 2010;1:9-13.
    Martins DS, Raziei T, Paulo AA, Pereira LS. Spatial and temporal variability of precipitation and drought in Portugal. Nat Hazard Earth Syst. 2012;12:1493-501.
    Mittermeier RA, Myers N, Thomsen JB, Da Fonseca GA, Olivieri S. Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol. 1998;12:516-20.
    MODIS Database. . Accessed 25 Sept 2017.
    Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853-8.
    Olson DM, Dinerstein E. The Global 200: priority ecoregions for global conservation. Ann Mo Bot Gard. 2002;89:199-224.
    Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr. 2003;12:361-71.
    Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr. 2007;34:102-17.
    Peterson AT, Papeş M, Soberón J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model. 2008;213:63-72.
    Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB. Ecological niches and geographic distributions. Princeton: Princeton University Press; 2011.
    Phillips SJ, Dudík M, Schapire RE. A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference on Machine learning Association for Computing Machinery; 2006. p. 83.
    Şekercioǧlu ÇH, Primack RB, Wormworth J. The effects of climate change on tropical birds. Biol Conserv. 2012;148:1-18.
    Shcheglovitova M, Anderson RP. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol Model. 2013;269:9-17.
    Sobrino JA, Julien Y. Time series corrections and analyses in thermal remote sensing. Thermal infrared remote sensing. Dordrecht: Springer; 2013. p. 267-85.
    Stattersfield A, Crosby M, Long A, Wege D. Endemic bird areas of the world: priorities for biodiversity conservation. Cambridge: BirdLife International; 1998.
    Stephens PA, Mason LR, Green RE, Gregory RD, Sauer JR, Alison J, Aunins A, Brotons L, Butchart SHM, Campedelli T, et al. Consistent response of bird populations to climate change on two continents. Science. 2016;352:84-7.
    Waltert M, Seifert C, Radl G, Hoppe-Dominik B. Population size and habitat of the White-breasted Guineafowl Agelastes meleagrides in the Taï region, Côte d'Ivoire. Bird Conserv Int. 2010;20:74-83.
    WPA-IUCN. Guidelines for the re-introduction of Galliformes for conservation purposes. Gland: World Pheasant Association and International Union for Conservation of Nature; 2009.
    Zhang JP, Zhu T, Zhang QH, Li CC, Shu HL, Ying Y, Dai ZP, Wang X, Liu XY, Liang AM, Shen HX, Yi BQ. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings. Atmos Chem Phys. 2012;12:5031-53.
  • Related Articles

Catalog

    Figures(4)

    Article Metrics

    Article views (241) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return