Daphawan Khamcha, Richard T. Corlett, Larkin A. Powell, Tommaso Savini, Antony J. Lynam, George A. Gale. 2018: Road induced edge effects on a forest bird community in tropical Asia. Avian Research, 9(1): 20. DOI: 10.1186/s40657-018-0112-y
Citation: Daphawan Khamcha, Richard T. Corlett, Larkin A. Powell, Tommaso Savini, Antony J. Lynam, George A. Gale. 2018: Road induced edge effects on a forest bird community in tropical Asia. Avian Research, 9(1): 20. DOI: 10.1186/s40657-018-0112-y

Road induced edge effects on a forest bird community in tropical Asia

Funds: 

King Mongkut's University of Technology Thonburi (Thailand) and the National Science and Technology Development Agency CPMO P-14-51347

the Royal Golden Jubilee Ph.D. Program, Thailand PHD/0036/2556

More Information
  • Corresponding author:

    Daphawan Khamcha, daphawan@gmail.com

  • Received Date: 24 Oct 2017
  • Accepted Date: 24 May 2018
  • Available Online: 24 Apr 2022
  • Publish Date: 01 Jun 2018
  • Background 

    Edge effects cause changes in bird community richness, abundance, and/or distribution within a landscape, but the avian guilds most influenced can vary among regions. Although Southeast Asia has the highest rates of deforestation and projected species loss, and is currently undergoing an explosive growth in road infrastructure, there have been few studies of the effects of forest edges on avian communities in this region.

    Methods 

    We examined avian community structure in a dry evergreen forest in northeastern Thailand adjacent to a five-lane highway. We evaluated the richness and abundance of birds in 11 guilds at 24 survey points on three parallel transects perpendicular to the edge. At each point, 10-min surveys were conducted during February?August 2014 and March?August 2015. Vegetation measurements were conducted at 16 of the bird survey points and ambient noise was measured at all 24 survey points.

    Results 

    We found a strongly negative response to the forest edge for bark-gleaning, sallying, terrestrial, and understory insectivores and a weakly negative response for arboreal frugivore-insectivores, foliage gleaning insectivores, and raptors. Densities of trees and the percentage canopy cover were higher in the interior, and the ambient noise was lower. In contrast, arboreal nectarivore-insectivores responded positively to the forest edge, where there was a higher vegetation cover in the ground layer, a lower tree density, and a higher level of ambient noise.

    Conclusions 

    Planners should avoid road development in forests of high conservation value to reduce impacts on biodiversity. Where avoidance is impossible, a number of potential mitigation Methods are available, but more detailed assessments of these are needed before they are applied in this region.

  • With complex geographical and climatic conditions, the forest areas in southeastern Tibet are home to many species of Galliformes. Previous fauna surveys in the region, either by foreigners during earlier times (Bailey, 1914; Battye, 1935; Ludlow and Kinnear, 1944) or by Chinese ornithologists since the 1960s (Cheng et al., 1983), only provided general information about the occurrence of Galliforme species. To understand the conservation status of these species in primary forests, we should have more quantitative data on habitat use and population abundance. Moreover, Galliforme species are susceptible to habitat change and are often treated as indicators of ecosystem health (Fuller et al., 2000; Fuller and Garson 2000; Storch, 2000). Data from areas with original ecosystems may provide a baseline for assessing the degree of habitat degradation in contrast to these highly human-disturbed areas.

    From May to October 1995, I investigated the habitat use of Galliformes in the upper Yigong Zangbu River, an area never explored by biologists. A further survey aimed at assessing the conservation status of the taxa in the area was made in May 2001.

    Fieldwork was carried out in the Sawang area (93°39′E, 32°24′N; Fig. 1), in Jiali county, southeastern Tibet, from May to October in 1995. Topographically, the study area is characterized by high mountains and deep canyons, with elevations ranging from 3700 to 6870 m, where most valley bottoms are less than 100 m wide. My survey area covered 32 km of the main valley and 14 km of three branches of the valley (Fig. 1). The vegetation is still original and varies vertically. On north-facing slopes < 4300 m in elevation, plant communities in the forest are dominated by Halfour spruce (Picea likiangensis) and between 4300–4800 m, by forests and scrubs of Rhododendron spp.; on south-facing slopes, between 3700–4300 m, the forest is dominated by Hollyleaf-like oak (Quercus aquifolioldes) between 4200–4700 m, by Tibetan juniper (Sabina tibetica) and at elevations > 4700 m, by alpine scrubs and meadows.

    Figure  1.  Spatial patterns of habitat in t survey area. Vertical lines: oak forests; crossed lines: spruce forests; circles: juniper forests; dots: Rhododendron shrubs; short oblique lines: alpine shrub-meadows; white sections: rocky zones; black sections: glaciers; thick lines: rivers and streams; black squares: villages.

    Along the entire valley of 50 km, there are only five Tibetan villages, with a very low population density (one person per 100 km2). Farmland is restricted to the bottom of the mountains. The villagers cut the oaks near the foot of the mountains for firewood, resulting in secondary scrub oak forests.

    Because the birds are shy in dense cover, I had few opportunities to catch sight of them. However, I found that feathers, fallen from their plumage, could survive for at least one month and were easy to identify in the field and distinguishable among species. The detection rate of feathers of each species in a defined habitat should be positively related with the number of birds and the time they spent in their habitat. Thus, encounter rates of molted feather samples were used as indicators of the relative abundance of Galliformes. The methodology of feather-counting was described by Lu and Zheng (2001). When collecting feather samples along the transects, I also noted individual birds, their flock size and membership. The data on individual sightings were provided in contrast to the results of feather-counting. I compared the flock size of each Galliforme species during the nesting period (late May to early July) to that in the chick-rearing period (mid-July to mid-October).

    All of seven species of Galliformes in the study area were found on south-facing slopes and only two species, the Chinese Grouse (Bonasa sewerzowi) and the Blood Pheasant (Ithaginis cruentus) also appeared on north-facing slopes (Table 1). A hybrid of the White Eared-pheasant (Crossoptilon crossoptilon) × the Tibetan Eared-pheasant (C. harmani) was the most predominant component of the Galliforme community, followed by Blood Pheasants and Chinese Grouse. These three species were relatively well adapted to the various types of vegetation in the area. Two other forest-dependent species, the Snow Partridge (Lerwa lerwa) and the Pheasant Grouse (Tetraophasis obscurus), were limited to the upper part of the forests with relatively low population densities, while a third species, the Crimson-bellied Tragopan (Tragopan temminckii) was only rarely sighted. Two meadow-dependent species, the Tibetan Snow Cock (Tetraogallus tibetanus) and the Tibetan Partridge (Perdix hodgsoniae), were relatively uncommon.

    Table  1.  Mean hourly encounter rates of Galliforme feather and individual (in parentheses) samples from the study area in summer
    Habitat Elevation (m) Survey time (h) Chinese Grouse Snow Partridge Tibetan Snow Cock Pheasant Grouse Tibetan Partridge Blood Pheasant Crimson-bellied Tragopan Hybrid Eared-pheasant
    Farmland 3700−3800 46.0 (0.04)
    South-facing slopes
    Secondary oak shrubs 3700−3900 39.6 0.05 (0.03) 0.81 (0.15)
    Oak forest 3800−4300 82.2 0.02 (0.02) 0.09 (0.04) 0.02 (0.01) 3.21 (0.34)
    Shrub-meadow above tree line 4300−4500 19.5 0.92
    Juniper forests 4200−4700 62.0 0.70 (0.13) 0.03 (0.03) 1.00 (1.00) 0.03 (0.02) 1.69 (0.27)
    Shrub-meadows above tree line 4600−4900 25.5 (0.04) (0.04) 0.75 (0.24)
    North-facing slopes
    Spruce forests 3700−4300 16.6 0.12 (0.12) 0.18 (0.18)
    Rhododendron 4300−4800 8.5 0.12
    Shrub-meadows above tree line 4600−4900 7.0
     | Show Table
    DownLoad: CSV

    The following provides further information about each species.

    The Chinese Grouse: This survey discovered a new distribution of the species, which extends its range from 98°40′ to 93°39′E. In the survey area, often 2–5 birds (3.4 ± 0.3, n = 11) were encountered in their preferred habitat with streams and dense scrub, sometimes in small open plots in the forest, feeding or dusting. If suddenly disturbed, the birds fly up to nearby trees.

    The Snow Partridge: In late June, three groups with five, five and six birds respectively were flushed from a juniper woodland close to the tree line, where their dusting sites were located. In late July, two birds were found in a scrub-grassland above the tree line.

    The Tibetan Snow Cock: Because of limited time of investigation in its preferred habitat, i.e., high-elevation meadows with rocks, I only saw one group of seven birds. One young bird, caught, weighted 0.53 kg, suggesting that the date of egg-laying of this bird was early April.

    The Pheasant Grouse: This bird limited its activities to the upper part of the forest dominated by oak but never moved out of the forest into the scrub-grassland above the tree line. If disturbed by dogs, this bird flew up to the top of trees. Its microhabitats consisted often of rocks and streams. Dusting sites beside a path visited by the birds were found at least three times.

    The Tibetan Partridge: Despite considerable efforts in investigating this species in the alpine scrub-meadows, believed suitable for this bird, I did not manage to find a single bird there. Only one pair was continuously seen at the foot of the mountains from June through July.

    The Blood Pheasant: The birds occurred in various habitats but their densities on south-facing slopes were higher than on north-facing slopes. They preferred microhabitats close to streams. Usually two birds (46.5%) (2.0 ± 0.3, ranging from 1–4, n = 11) remained together during the breeding season. I found in late September that these birds and Hybrid Eared-pheasants used the same dusting hollows. In winter, according to the villagers, flocks are formed of more than 10 individual birds, appearing at lower elevations.

    The Crimson-bellied Tragopan: Only two single birds were found in an oak woodland and a dusting site in the juniper forest.

    The Hybrid Eared-pheasant: This bird has the largest population among the Galliformes in the area and appeared in various habitats on south-facing slopes, with oak forests as its most preferred habitat. During the nesting period (May to July), flock size varied between 1 to 7 birds (2.9 ± 0.3, n = 43) and then increased (7.0 ± 1.0, 2–15, n = 14) during the brood-rearing period (August to October).

    My results showed that the Galliforme species in the study area tended to avoid coniferous forests dominated by Balfour spruce, an environment widely encountered on the eastern Qinghai-Tibet plateau and preferred by many species of Galliformes (Cheng et al., 1978; Johnsgard, 1999). The reason is thought to be that the climate in the woodland is so humid that ground-dwellers have difficulties in breeding and foraging (Lu and Zheng, 2001).

    Before the 1980s, rifles were available to local people. It is generally known that game animals, including Galliformes, were frequently killed during that period. In the mid 1990's, the Firearm Law of the People's Republic of China was issued, forbidding anybody to own and keep any kind of gun privately. As a result, pressure from hunting of wildlife has declined considerably. However, trapping, especially by people from outside Tibet, has not been entirely prohibited, causing a certain loss of Galliformes. Oak-cutting in nearby villages has led to the emergence of second scrub oak forests, not suitable to Galliformes. To encourage local people to use firewood in more effective ways (for example by promoting more efficient stoves), is one means of reducing the loss of oak forests.

    However, overall, because of low population densities, poor communication and less developed economies, as well as protection by local religious and government policies, Galliformes in the region have been facing relatively fewer threats. But it should be kept in mind that developing local economies and improved communication will inevitably pose a threat to wildlife. Therefore, development plans for unexplored areas should be carefully made, because once loss of biodiversity, derived from a long-term evolutionary trend, reestablishment is almost impossible.

    I suggest for government agencies to establish a nature reserve in the region. This will prevent large-scale landscape use in the future and also provide a foundation for enhancing public conservation awareness. To aid conservation, further studies on the biology and ecology of the Galliformes are needed.

    I would like to thank Duojicipei and his family for accommodation in the area. I am grateful to Bingyuan Gu, Soulong Ciren and Cangjue Zhuoma for their assistance in the survey. The field survey was supported by the Tibetan Bureau of Science and Technology, the National Natural Science Foundation of China (Grant No. 39800016) and the Tibet Important Bird Area Survey Programme organized by BirdLife International.

  • Andersen DE. Survey techniques. In: Bird DM, Bildstein KM, editors. Raptor research and management techniques. Surrey: Hancock House Publishers; 2007. p. 89–100.
    Arevalo E, Newhard K. Traffic noise affects forest bird species in a protected tropical forest. Rev Biol Trop. 2011;59:969–80.
    Arnold GW, Weeldenburg JR. Factors determining the number and species of birds in road verges in the wheatbelt of Western Australia. Biol Conserv. 1990;53:295–315.
    Arnold TW. Uninformative parameters and model selection using Akaike's information criterion. J Wildl Manag. 2010;74:1175–8.
    Barbaro L, van Halder I. Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography. 2009;32:321–33.
    Barber NA, Marquis RJ. Light environment and the impacts of foliage quality on herbivorous insect attack and bird predation. Oecologia. 2011;166:401–9.
    Barber CP, Cochrane MA, Souza CM Jr, Laurance WF. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol Conserv. 2014;177:203–9.
    Bennett VJ. Effects of road density and pattern on the conservation of species and biodiversity. Curr Landsc Ecol Rep. 2017;2:1–11.
    Bierregaard RO, Stouffer PC. Understory birds and dynamic habitat mosaics in Amazonian rainforests. In: Laurance WF, Bierregaard RO, editors. Tropical forest remnants: ecology, management, and conservation of fragmented communities. Chicago: University of Chicago Press; 1997. p. 138–55.
    Bolker BA, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS. GLMMs in action: gene-by-environment interaction in total fruit production of wild populations of Arabidopsis thaliana. Revised version, part 2. 2011. . Accessed 2 Nov 2015.
    Dale S, Mork K, Solvang R, Plumptre AJ. Edge effects on the understory bird community in a logged forest in Uganda. Conserv Biol. 2000;14:265–76.
    Dayananda SK, Goodale E, Lee MB, Liu JJ, Mammides C, Quan RC, Sreekar R, Yasuda M. Effects of forest fragmentation on nocturnal Asian birds: a case study from Xishuangbanna, China. Zool Res. 2016;37:151–8.
    Deikumah JP, McAlpine CA, Maron M. Mining matrix effects on West African rainforest birds. Biol Conserv. 2014;169:334–43.
    Department of Highways. Annual Average Daily Traffic on Highways 2014, Bangkok. 2014. . Accessed 10 Oct 2016.
    Ewers RM, Didham RK. Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev Camb Philos Soc. 2006;81:117–42.
    Ferger SW, Schleuning M, Hemp A, Howell KM, Böhning-Gaese K. Food resources and vegetation structure mediate climatic effects on species richness of birds. Glob Ecol Biogeogr. 2014;23:541–9.
    Flaspohler DJ, Temple SA, Rosenfield RN. Species-specific edge effects on nest success and breeding bird density in a forested landscape. Ecol Appl. 2001;11:32–46.
    Gale GA, Round PD, Pierce AJ, Nimnuan S, Pattanavibool A, Brockelman WY. A field test of distance sampling methods for a tropical forest bird community. Auk. 2009;126:439–48.
    Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press; 2007.
    Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci Adv. 2015. .
    Halfwerk W, Holleman LJM, Lessells CM, Slabbekoorn H. Negative impact of traffic noise on avian reproductive success. J Appl Ecol. 2011;48:210–9.
    Jack J, Rytwinski T, Fahrig L, Francis CM. Influence of traffic mortality on forest bird abundance. Biodivers Conserv. 2015;24:1507–29.
    Johns AD. Effect of selective logging on the ecology organization of a peninsular Malaysian rain forest avifauna. Forktail. 1986;1:65–79.
    Lambert FR, Collar NJ. The future for Sundaic lowland forest birds: long-term effect of commercial logging and fragmentation. Forktail. 2002;18:127–46.
    Laurance SGW. Responses to understory rain forest birds to road edges in central Amazonia. Ecol Appl. 2004;14:1344–57.
    Laurance SG, Stouffer PC, Laurance WF. Effects of road clearings on movement patterns of understory rainforest birds in central Amazonia. Conserv Biol. 2004;18:1099–109.
    Laurance WF, Peletier-Jellema A, Geenen B, Koster H, Verweij P, Van Dijck P, Lovejoy TE, Schleicher J, Van Kuijk M. Reducing the global environmental impacts of rapid infrastructure expansion. Curr Biol. 2015;25:259–62.
    Lee TM, Soh MC, Sodhi N, Koh LP, Lim SLH. Effects of habitat disturbance on mixed species bird flocks in a tropical sub-montane rainforest. Biol Conserv. 2005;122:193–204.
    Levey DJ. Tropical wet forest treefall gaps and distributions of understory birds and plants. Ecology. 1988;69:1076–89.
    Lindell CA, Chomentowski WH, Zook JR. Characteristics of bird species using forest and agricultural land covers in southern Costa Rica. Biodivers Conserv. 2004;13:2419–41.
    Lindell CA, Riffell SK, Kaiser SA, Battin AL, Smith ML, Sisk TD. Edge responses of tropical and temperate birds. Wilson J Ornithol. 2007;119:205–20.
    Lindenmayer DB, Laurance WF, Franklin JF. Global decline in large old trees. Science. 2012;338:1305–6.
    Mammides C, Schleuning M, Böhning-Gaese K, Schaab G, Farwig N, Kadis C, Coulson T. The indirect effects of habitat disturbance on the bird communities in a tropical African forest. Biodivers Conserv. 2015;24:3083–107.
    Mahmoudi S, Ilanloo SS, Shahrestanaki AK, Valizadegan N, Yousefi M. Effect of human-induced forest edges on the understory bird community in Hyrcanian forests in Iran: implication for conservation and management. For Ecol Manag. 2016;382:120–8.
    Menke S, Böhning-Gaese K, Schleuning M. Plant-frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos. 2012;121:1553–66.
    Moradi HV, Zakaria M, Mohd A, Yusof E. Insectivorous birds and environmental factors across an edge-interior gradient in tropical rainforest of Malaysia. Int J Zool Res. 2009;5:27–41.
    Murcia C. Edge effect in fragmented forest: implications for conservation. Trends Ecol Evol. 1995;10:58–62.
    Newmark WD, Stanley TR. Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proc Natl Acad Sci USA. 2011;108:11488–93.
    Newton I. The role of nest sites in limiting the number of hole-nesting birds: a review. Biol Conserv. 1994;70:265–76.
    Polak M, Wiącek J, Kucharczyk M, Orzechowski R. The effect of road traffic on a breeding community of woodland birds. Eur J For Res. 2013;132:931–41.
    Pollock HS, Cheviron ZA, Agin TJ, Brawn JD. Absence of microclimate selectivity in insectivorous birds of the Neotropical forest understory. Biol Conserv. 2015;188:116–25.
    Potapov P, Hansen MC, Laestadius L, Turubanova S, Yaroshenko A, Thies C, Smith W, Zhuravleva I, Komarova A, Minnemeyer S, Esipova E. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci Adv. 2017;3:e1600821.
    Ralph CJ, Geupel GR, Pyle P, Martin TE, DeSante DF. Handbook of field methods for monitoring landbirds. Albany: U.S. Department for Agriculture; 1993.
    Restrepo C, Gomez N. Responses of understory birds to anthropogenic edges in a neotropical montane forest. Ecol Appl. 1998;8:170–83.
    Restrepo C, Gomez N, Heredia S. Anthropogenic edges, treefall gaps, and fruit-fruigivore interactions in a neotropical montane forest. Ecology. 1999;80:668–85.
    Round PD, Pierce AJ, Sankamethawee W, Gale GA. The Avifauna of the Mo singto forest dynamics plot, Khao Yai national park, Thailand. Nat Hist Bull Siam Soc. 2011;57:57–80.
    Sliwinski M, Powell P, Koper N, Giovanni M, Schacht W. Research design considerations to ensure detection of all species in an avian community. Methods Ecol Evol. 2016;7:456–62.
    Sloan S, Sayer J. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For Ecol Manag. 2015;352:134–45.
    Stibig HJ, Achard F, Carboni S, Raši R, Miettinen J. Changes in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences. 2014;11:247–58.
    Terraube J, Archaux F, Deconchat M, Halder I, Jactel H, Barbaro L. Forest edges have high conservation value for bird communities in mosaic landscapes. Ecol Evol. 2016;6:5178–89.
    Van Renterghem T, Botteldooren D, Verheyen K. Road traffic noise shielding by vegetation belts of limited depth. J Sound Vib. 2012;331:2404–25.
    Vetter D, Hansbauer MM, Végvári Z, Storch I. Predictors of forest fragmentation sensitivity in neotropical vertebrates: a quantitative review. Ecography. 2011;34:1–8.
    Vetter D, Rücker G, Storch I. A meta-analysis of tropical forest edge effects on bird nest predation risk: edge effects in avian nest predation. Biol Conserv. 2013;159:382–95.
    Ware HE, McClure CJW, Carlisle JD, Barber J. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proc Natl Acad Sci USA. 2015;112:12105–9.
    Watson JEM, Whittaker RJ, Dawson TP. Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southern Madagascar. Biol Conserv. 2004;120:311–27.
    Whelan CJ, Maina GG. Effects of season, understorey vegetation density, habitat edge and tree diameter on patch-use by bark-foraging birds. Funct Ecol. 2005;19:529–36.
    Wilcove DS, Giam X, Edwards DP, Fisher B, Koh LP. Navjot's nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol Evol. 2013;28:531–40.
    Wong TC, Sodhi NS, Turner IM. Artificial nest and seed predation experiments in tropical lowland rainforest remnants of Singapore. Biol Conserv. 1998;85:97–104.
  • Related Articles

Catalog

    Figures(4)  /  Tables(3)

    Article Metrics

    Article views (684) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return