Ling Yang, Lizhi Zhou, Yunwei Song. 2015: The effects of food abundance and disturbance on foraging flock patterns of the wintering Hooded Crane (Grus monacha). Avian Research, 6(1): 15. DOI: 10.1186/s40657-015-0024-z
Citation: Ling Yang, Lizhi Zhou, Yunwei Song. 2015: The effects of food abundance and disturbance on foraging flock patterns of the wintering Hooded Crane (Grus monacha). Avian Research, 6(1): 15. DOI: 10.1186/s40657-015-0024-z

The effects of food abundance and disturbance on foraging flock patterns of the wintering Hooded Crane (Grus monacha)

More Information
  • Corresponding author:

    Lizhi Zhou, zhoulz@ahu.edu.cn

  • Received Date: 01 Mar 2015
  • Accepted Date: 01 Jun 2015
  • Available Online: 24 Apr 2022
  • Publish Date: 11 Aug 2015
  • Background 

    Food abundance and availability affect flock patterns of foraging birds. Cost and risk tradeoffs are especially critical for flocks of wintering waterbirds foraging in lake wetlands. Waterbirds losing suitable habitats face insufficient food supplies and high levels of disturbance, affecting their foraging activities. Our Objective was to study the effects of food abundance and disturbances on flock size and the structure of Hooded Crane flocks wintering at Shengjin Lake and, as well, to understand the response of wintering waterbirds to habitat degradation for future management decisions and protection of the population.

    Methods 

    We investigated food abundance, disturbances and flock foraging activities of the wintering Hooded Crane in several foraging habitats of Shengjin Lake from November 2013 to April 2014. Flock size and structure were observed by scan sampling. Data on food abundance and disturbances were collected by sampling. Flock size and structure were compared among three wintering stages. The relationship between food resources, disturbances and flock size were illustrated using a generalized linear model.

    Results 

    In the early and middle wintering periods, the Hooded Crane used paddy fields as its major foraging habitat, where the number of foraging birds and flocks were the highest. During the late period, the cranes took to meadows as their major foraging habitat. The variation among foraging flock was mainly embodied in the size of the flocks, while the age composition of these flocks did not change perceptibly. Family flocks were notably different from flock groups in size and age composition. The Results of a generalized linear model showed that the food abundance had a marked effect on foraging flock size and age composition, while disturbances had a significant effect only on flock size. From our analysis, it appeared that the combined effect of the two variables was significant on the size of the foraging flock, but had less impact on age composition.

    Conclusions 

    Food abundance and disturbances affected the flock size of the Hooded Crane. With abundant food and high disturbances, flock sizes increased owing to cooperation in foraging. To avoid competition and maximize foraging benefits, flock size reduces with an abundance of food but low disturbance. By trading off risks and costs, the cranes showed flexible flock distributions and a variety of foraging strategies to maximize benefits and to improve their fitness.

  • Laying sequence in birds strongly affects the color, mass, metabolic rate, and embryonic development rate of the eggs (Ruxton et al. 2001; Moreno and Osorno 2003; Griffith and Gilby 2013). The pigments covering eggshells are deposited in the 4 h preceding egg laying by pigment glands (Burley and Vadehra 1989). During the laying period, the pigments in some birds gradually decrease as the number of eggs laid increases, which results in a shift in eggshell color from dark to light over the course of the laying sequence. This phenomenon, which is relatively common among the Passer genus (Yom-Tov 1980; Ruxton et al. 2001; Poláček et al. 2017), produces a clutch with a diversity of egg colors; the lightest egg is the last one laid (Lowther 1988; Poláček et al. 2017). Previous studies showed that variation in egg color reflected differences in egg quality; the last eggs to be laid with lighter coloration were the poorest quality (Moreno and Osorno 2003; Soler et al. 2005). Parent birds often distribute resources, such as antioxidants and male hormones, unevenly over the course of the laying sequence (Hall et al. 2010; Boncoraglio et al. 2011). Therefore, eggs laid at different points in the sequence receive different resources, which could influence their embryonic development and ultimate fate (Lipar and Ketterson 2000; Nicolai et al. 2004; Groothuis et al. 2005; Granroth-Wilding et al. 2014; Poláček et al. 2017; Cao et al. 2018). Some female use big size and other maternal resources by last laid eggs to compensate for the survival disadvantage experienced (Saino et al. 2010; Newbrey et al. 2015).

    Magrath et al. (2009) showed that, given consistent environmental conditions, eggs laid earlier start to develop before the female bird has finished laying the entire clutch, so the first eggs laid hatch before the last eggs do. As a result, the clutch includes nestlings with an extreme imbalance in mass quality (Magrath et al. 2009). However, other research indicated that the eggs of Canada Geese (Branta canadensis) from the same clutch hatched at about the same time, with a maximum time interval of less than 24 h (Boonstra et al. 2010). Therefore, the embryonic development rate differed for eggs within the same clutch.

    So far only a small number of studies have focused on the relationship between laying sequence and embryonic internal development rate in birds showing that laying sequence can affect embryonic development (Nicolai et al. 2004; Boonstra et al. 2010; Cao et al. 2018; Yang et al. 2018). Zebra Finch (Taeniopygia Guttata) clutches number can alter the developmental time of embryos, egg maternal resource allocation across the laying sequence can influence development (Griffith and Gilby 2013). In this study, using artificial nest boxes, we compared the effects of laying sequence on eggshell color variation and embryonic development speed of Russet Sparrows (Passer cinnamomeus), a passerine species.

    This study was conducted in the Kuankuoshui National Nature Reserve (28°10ʹN, 107°10ʹE), a subtropical evergreen broadleaf forest in southwestern China at an altitude of about 1500 m (see Yang et al. 2010 for more details) from April to August 2013.

    The Russet Sparrow belongs to the Passeridae family and is mainly found in southern China and the Himalayan region (Summers-Smith 1988). They are year-round residents at this study site, and they build nests in chimney tubes, cavities of stone walls and eaves (Yang et al. 2012b; Huo et al. 2018). Artificial nest boxes were provided to attract sparrows because entrances to their natural nests are usually too deep and small to allow easy access (see below).

    Nest boxes were 35 cm in depth with an entrance hole diameter of 4 cm (Fig. 1). We checked each box periodically until the first Russet Sparrow egg was observed in the nest, after which the nests were checked once a day to confirm if the onset of incubation start with the first egg or until after clutch completion. When a new egg was discovered in the nest, the tip of the egg was numbered with a light blue marker to indicate egg-laying order. After a full clutch of eggs had been laid, they were all replaced with model eggs and moved to an incubator together. We did so because Russet Sparrows start their incubation after clutch completion and accept any model eggs in their nests and seem not to show any egg discrimination (Huo et al. 2018). After the nestlings hatched, they were returned to their original nests to be raised by their parents.

    Figure  1.  The nest box used and a male Russet Sparrow. Photo by Bruce Lyon

    We divided the sparrow eggs into three groups. The first eggs to be laid were first group (one egg), the eggs that were intermediate in the laying sequence were middle group (two or three eggs), and the last eggs to be laid were last group (one egg). The middle group has two or three eggs, so we analyze the data using an average for the middle eggs. A caliper (505-681, Mitutoyo, Japan; range 0-150 mm, accuracy ± 0.02 mm) was used to measure the length and width of the eggs. An electronic balance (EHA501, Guangdong Xiangshan Weighing Apparatus Group Co., Ltd.; range 0-100 g; accuracy 0.01 g) was used to weigh the eggs. The volume of the eggs was calculated according to Hoyt (1979): egg volume = 0.51 × egg length × square egg width. The eggs in each group were weighed from the first day of incubation, and daily afterward, until nestlings had hatched. Egg color was quantified using a USB4000 VIS-NIR spectrometer (Ocean Optics, Inc., Dunedin, Florida, USA). Background and spot color were measured at three randomly chosen places on each egg. A detailed description of the method can be found in Yang et al.(2009, 2010). The values of the ultra-violet (300-400 nm) and visible (400-700 nm) sections of the reflectance spectrum were used for analysis. The eggs were hatched in a Mini EX digital incubator (Brinsea Co. Ltd., UK; also see Yang et al. 2018).

    Embryonic heart rates were measured using a digital egg monitor MK1 type heart rate meter (Buddy Digital Egg Monitor, Avitronics Inc., Cornwall, England). In order to avoid errors in heart rate measurement due to differences in temperature, the eggs were placed horizontally in the heart rate meter for the measurement immediately after they were removed from the incubator (also see Zhao et al. 2017; Cao et al. 2018; Yang et al. 2018). The heart rate (beats per minute) was recorded after the heart rate became stable. Heart rate measurements started on the first day of incubation and were conducted every other day, until the nestlings hatched. The embryonic development time was defined as the time interval between the first appearance of heart rate (which occurred 2-5 days after the start of incubation) and hatching (Cao et al. 2018).

    The incubator hatching temperature was set at 7.5 ± 0.5 ℃; the relative humidity was 55 ± 5%; the egg turning interval was r/45 min; the cooling time was 2 h/day. One-sample Kolmogorov-Smimov (K-S) test was used to analyze the normality distribution of the data. If the data satisfied the conditions of normal distribution, one-way analysis of variance (ANOVA) was used to compare the means. If the data were not normally distributed, Welch's ANOVA was used. Differences at p < 0.05 were considered statistically significant and at p < 0.01 were highly statistically significant. Unless otherwise stated, data were presented as mean ± SD, and all tests were 2-tailed. Statistical analyses were performed in IBM SPSS 20.0 for Windows (IBM Inc., USA).

    Each Russet Sparrow clutch contained 3-5 eggs (n = 69). One egg was laid each day, normally in the early morning. Whitening in last eggs was relatively apparent to the naked eye in the majority of nests because pale colors reflect more ambient light than dark colors (78.5%, n = 69) (Fig. 2). Background color reflectance of last eggs was significantly higher than those in the other two groups, confirming that whitening occurred (Fig. 3). Spot color reflectance among the three groups was similar, all spots being dark brown (Fig. 3). The brightness reflectance of the background color was significantly higher in last eggs than in the other groups (F = 10.817, p = 0.001). Except for green light chromaticity, the other lights' chromaticity of the background color showed significant differences between the groups. Last eggs had the highest ultraviolet (UV) and blue light chromaticity (F = 3.531, p = 0.041; F = 3.986, p = 0.028) and the lowest red light and yellow light chromaticity (F = 3.890, p = 0.030; F = 3.655, p = 0.037). However, there was no difference in background color hue among the three groups (F = 1.518, p = 0.234) (Table 1). The spots on the eggs in the three groups did not significantly differ in brightness, hue, or chromaticity (Table 2).

    Figure  2.  Whitening of the last eggs to be laid in Russet Sparrow clutches. a, b, and c are three clutches of Russet Sparrow eggs, respectively, placed from left to right according to their laying orders. Photo by Juan Huo
    Figure  3.  Background reflectance of Russet Sparrow eggs. G1 refers to first group, the first eggs to be laid, G2 to middle group, the intermediate eggs in the sequence, and G3 to last group, the last eggs in each clutch. Back means eggshell background color, spot means eggshell spot color
    Table  1.  Background reflectance parameters of Russet Sparrow eggs
    First group (n = 12) Middle group (n = 12) Last group (n = 12) F Sig.
    Brightness 13, 211.97 ± 4730.26 13, 668.24 ± 3956.62 20, 162.99 ± 3504.98 10.817 0.001
    Hue 0.827 ± 0.712 0.901 ± 0.321 0.378 ± 1.136 1.518 0.234
    UV-chroma 0.202 ± 0.030 0.212 ± 0.029 0.231 ± 0.024 3.531 0.041
    B-chroma 0.172 ± 0.016 0.168 ± 0.014 0.183 ± 0.008 3.986 0.028
    G-chroma 0.198 ± 0.009 0.193 ± 0.006 0.194 ± 0.007 1.450 0.249
    Y-chroma 0.209 ± 0.017 0.208 ± 0.016 0.194 ± 0.011 3.890 0.030
    R-chroma 0.219 ± 0.027 0.219 ± 0.024 0.198 ± 0.014 3.655 0.037
     | Show Table
    DownLoad: CSV
    Table  2.  Spot reflectance parameters of Russet Sparrow eggs
    First group (n = 12) Middle group (n = 12) Last group (n = 12) F Sig.
    Brightness 2952.68 ± 4730.26 3413.34 ± 1126.44 3532.50 ± 1515.39 0.632 0.538
    Hue 0.373 ± 0.358 0.522 ± 0.287 0.464 ± 0.177 0.835 0.443
    UV-chroma 0.247 ± 0.046 0.236 ± 0.048 0.244 ± 0.037 0.215 0.808
    B-chroma 0.149 ± 0.020 0.143 ± 0.019 0.144 ± 0.020 0.245 0.784
    G-chroma 0.159 ± 0.014 0.162 ± 0.012 0.155 ± 0.012 1.001 0.378
    Y-chroma 0.198 ± 0.025 0.207 ± 0.025 0.201 ± 0.020 0.397 0.675
    R-chroma 0.247 ± 0.039 0.252 ± 0.040 0.256 ± 0.043 0.126 0.882
     | Show Table
    DownLoad: CSV

    When the first Russet Sparrow egg was observed in the nest, we checked once a day to confirm that Russet Sparrows start their incubation until after clutch completion. The three groups did not differ in egg size, mass, or weight loss during development (Table 3). Hatching success rates of first, middle and last groups were 41.7, 46.1, and 25.0%, respectively, without significant differences (χ2 = 1.55, p = 0.46).

    Table  3.  Sizes of Russet Sparrow eggs produced at different points in the laying sequence
    First group (n = 12) Middle group (n = 12) Last group (n = 12) F Sig.
    Mass (g) 2.020 ± 0.178 2.025 ± 0.129 2.028 ± 0.172 0.008 0.992
    Length (mm) 19.128 ± 0.532 18.975 ± 0.489 19.071 ± 0.566 0.256 0.775
    Width (mm) 14.117 ± 0.478 14.118 ± 0.413 14.165 ± 0.604 0.035 0.965
    Volume (cm3) 1.947 ± 0.152 1.930 ± 0.121 1.944 ± 0.183 0.083 0.921
    Mass loss (g) 0.184 ± 0.023 0.185 ± 0.040 0.210 ± 0.034 0.656 0.533
     | Show Table
    DownLoad: CSV

    The embryonic heart rates among the three groups of eggs followed approximately the same trend. Embryonic heart rate increased as the number of incubation days increased (Fig. 4). Heart rates became detectable between two and five days after the start of incubation but appeared latest in last eggs. The highest heart rates appeared on the day of hatching (i.e., day 13) for first and middle eggs, but on day 11 in last eggs. Regression analysis using linear and cubic models showed that a regression curve was the best fit for the heart rate change in first eggs, indicating that the heart rates of these eggs were the most stable. The regression curve fit was the poorest in last eggs, indicating that embryonic heart rate change in these eggs fluctuated the most. The incubation period was around 13 days in all three groups, without significant differences (F = 0.589, p = 0.566). The embryonic development time of the last eggs was significantly shorter than those of the first eggs (F = 3.60, p = 0.040) (Fig. 5).

    Figure  4.  Embryonic heart rates of Russet Sparrow. Linear and cubic models were used in regression analysis showing that a regression curve was the best fit for the heart rate change in the first egg group and the poorest in the last egg group
    Figure  5.  Incubation period and development time of Russet Sparrow. Development time was a subset of incubation period and was the interval between the first detection of a heart beat and hatching. The lower case letters a and b refer to the results of the LSD (Least Significant Difference) test. The difference between first and last groups was highly significant

    Our spectroscopic analysis showed that Russet Sparrow eggs gradually became lighter as the laying sequence progressed, with a relatively large eggshell color variation coefficient. This change is mainly manifested in the background color of the eggs. Lowther (1988) believed that the amount of pigment secreted by glands in birds is limited, and the pigments gradually subside as egg-laying progresses. Therefore, pigments could be exhausted or in short supply by the time the last egg is laid, which results in its whitened appearance. However, in this study, whitening also appeared in eggs that were laid earlier. Hence, Lowther's hypothesis does not hold here.

    Some researchers believe that egg colors of cave-nesting birds tend to be white and to lack spots. One reason might be that white eggs are more easily seen by parent birds in cave nests with lowlight (Lack 1958).

    Another selective pressure, the existence of nest parasites, can force hosts to increase the evenness of egg color in a clutch, as it enable parent birds to more easily detect an intruder's egg and at the same time increase the diversity of egg color among clutches of the same species (Stokke et al. 2002; Spottiswoode and Stevens 2011). One hypothesis states that the whitening of the last eggs to be laid could be a signal that prevents nest parasites, by informing the parasites that the hosts have completed egg-laying and the egg incubation period has started (Yom-Tov 1980; Ruxton et al. 2001). Although there are many parasitic cuckoo species in the study area (Yang et al. 2011, 2012a), despite evidence that cuckoos can parasitize cave-nesting birds and that some cave-nesting birds are suitable hosts for cuckoos (Deng 2013; Grim et al. 2014; Liang et al. 2016), Russet Sparrow was not the host for any type of cuckoos (Huo et al. 2018) in this study area and no intra-species parasitism has been observed so far. Hence, the evolution of egg color diversity of Russet Sparrow needs further investigation in the future.

    Previous studies believed that the color of birds' eggs is related to the mass of eggs and that different egg colors reflect different levels of egg quality (Moreno and Osorno 2003; Morales et al. 2006; Newbrey et al. 2015). Our data showed that the color of Russet Sparrow eggs was not associated with egg size or mass, and laying order also did not affect size or mass. However, egg-laying order did affect embryonic development rate. Russet Sparrow eggs in the same clutch had the same hatching period and all hatched on the same day (within 24 h). The heart rates of eggs laid earlier were detected earlier, and these eggs had relatively longer embryonic development periods, while the heart rates of eggs laid later were detected later. These eggs had shorter embryonic development periods but higher development speed. In House Sparrows (Passer domesticus), most eggs of a clutch hatched synchronously and there was no difference in hatchability in relation to sequence of egg-laying (Singer and Yom-Tov 1988). Full incubation began after the completion of the clutch in clutches of two and three eggs in both House Sparrows and clutches of four eggs in Tree Sparrows (P. montanus) but before the clutch was completed (by up to one day) in larger clutches (Seel 1968). In Black Brant (Branta bernicla nigricans), embryonic metabolic rate may affect development in synchronizing hatch (Nicolai et al. 2004). In addition, the decline in egg size as laying progresses could contribute to hatching synchrony because those subsequent embryos tend to have higher metabolic rates which hypothesized also contributes to relatively more rapid development (Nicolai et al. 2004). Such phenomenon has also been verified in Zebra Finch (Taeniopygia guttata), a passerine bird, as well as in some non-passerines (Nicolai et al. 2004; Boonstra et al. 2010; Griffith and Gilby 2013; Granroth-Wilding et al. 2014; Hemmings and Birkhead 2016). The number of Zebra Finch eggs in a clutch also influences the eggs' embryonic development speed (Griffith and Gilby 2013).

    Hatching asynchrony results in a brood with nestlings that differ in age and size. Older and larger nestlings usually outcompete younger ones for food and, as a result, grow more quickly (Zach 1982; Kacelnik et al. 1995), while the last-hatched nestling reduced growth and survival (Wiebe 1996; Ostreiher 1997). Complete hatching synchrony leads to uniformly aged nestlings (Clark and Wilson 1981; Stoleson and Beissinger 1995). The hatching time of some birds can be affected by the vocalizations of parent birds or nestlings of the same clutch, as these sounds can stimulate the embryo to speed its development (Saino and Fasola 1996).

    In summary, we showed that the background color brightness of the last eggs laid by Russet Sparrows was significantly higher (whiter) than those of the other eggs. However, all eggs were hatched around 13 days, indicating that laying sequence significantly affected embryonic development speed; the last eggs to be laid developed significantly faster than did the first in the clutch. Our study also indicated that laying sequence has an important effect on the embryonic heart rate in Russet Sparrows.

    WL designed the experiment, JH, TS and NN conducted the experiments and collected field data. JH and CY performed data analyses and wrote an earlier version of the manuscript. WL revised and improved the manuscript. All authors read and approved the final version of the manuscript.

    We would like to thank Prof. Anders Pape Møller for his helpful comments on this manuscript. We thank Junqiu Wu, Guoxian Liang, and Ping Ye for their assistance with fieldwork, and the help and cooperation from the Kuankuoshui National Nature Reserves.

    The authors declare that they have no competing interests.

    The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

    Not applicable.

    The experiments comply with the current laws of China, where they were performed. Permit for this study was approved by Kuankuoshui National Nature Reserves, Guizhou Province. Experimental procedures were in agreement with the Animal Research Ethics Committee of Hainan Provincial Education Centre for Ecology and Environment, Hainan Normal University (permit nos. HNECEE-2011-002 and HNECEE-2013-001).

  • Abramsky Z, Strauss E, Subach A, Kotler BP, Reichman A. 1996. The effect of barn owls (Tyto alba) on the activity and microhabitat selection of Gerbillus allenbyi and G. pyramidum. Oecologia, 105(3):313-319
    Alonso JC, Bautista LM, Alonso JA. 2004. Family-based territoriality vs flocking in wintering Common Cranes (Grus grus). J Avian Biol, 35(5):434-444
    Altmann J. 1974. Observational study of behavior: sampling methods. Behaviour, 49(3):227-267
    Avilés JM. 2003. Time budget and habitat use of the Common Crane wintering in Dehesas of southwestern Spain. Can J Zool, 81(7):1233-1238
    Avilés JM, Bednekoff PA. 2007. How do vigilance and feeding by common cranes Grus grus depend on age, habitat, and flock size? Avian Biol, 38(6):690-697
    Azevedo CS, Ferraz JB, Tinoco HP, Young RJ, Rodrigues M. 2010. Time-activity budget of greater rheas (Rhea americana, Aves) on a human-disturbed area: the role of habitat, time of the day, season and group size. Acta Ethol, 13(2):109-117
    Bahr DB, Bekoff M. 1999. Predicting flock vigilance from simple passerine interactions: modelling with cellular automata. Anim Behav, 58:831-839
    Barta Z, Liker A, Mónus F. 2004. The effects of predation risk on the use of social foraging tactics. Anim Behav, 67:301-308
    Barter M, Chen LW, Cao L, Lei G. 2004. Waterbird Survey of the Middle and Lower Yangtze River Floodplain in Late January and Early February 2004. China Forestry Publishing House, Beijing
    Baschuk MS, Koper N, Wrubleski DA, Goldsborough G. 2012. Effects of water depth, cover and food resources on habitat use of marsh birds and waterfowl in boreal wetlands of Manitoba, Canada. Waterbirds, 35(1):44-55
    Beauchamp G. 2005. Does group foraging promote efficient exploitation of resources? Oikos, 111(2):403-407
    Beauchamp G. 2009. How does food density influence vigilance in birds and mammals? Anim Behav, 78:223-231
    Beauchamp G. 2012. Foraging speed in staging flocks of semipalmated sandpipers: evidence for scramble competition. Oecologia, 169(4):975-980
    Beauchamp G. 2013. Social foragers adopt a riskier foraging mode in the centre of their groups. Biol Lett, 9(6):1-3
    Bekoff M. 1995. Vigilance, flock size, and flock geometry: information gathering by western evening grosbeaks (Aves, Fringillidae). Ethology, 13:150-161
    BirdLife International. 2014. Grus monacha. In: IUCN 2014. The IUCN Red List of Threatened Species. Version 2014.3.,
    Bishop MA, Li FS. 2002. Effects of farming practices in Tibet on wintering Black-necked Crane (Grus nigricollis) diet and food availability. Biodiv Sci, 10(4):393-398
    Brown JS, Kotler BP. 2004. Hazardous duty pay and the foraging cost of predation. Ecol Lett, 7(10):999-1014
    Cai TL, Huettmann F, Guo YM. 2014. Using stochastic gradient boosting to infer stopover habitat selection and distribution of Hooded Cranes Grus monacha during spring migration in Lindian, Northeast China. PLoS One, 9(2):1-12
    Chen JY, Zhou LZ. 2011. Guild structure of wintering waterbird assemblages in shallow lakes along Yangtze River in Anhui Province, China. Acta Ecol Sin, 31(18):5323-5331
    Cong P, Rees EC, Sun MM, Mj Z, Cao L, Barter M. 2011. A comparison of behaviour and habitat use by Bewick's Swans Cygnus columbianus bewickii at wintering sites in China and Europe: preliminary observations. Wildfowl, 61:52-73
    Conradt L. 1998. Measuring the degree of sexual segregation in group-living animals. J Anim Ecol, 67:217-226
    Czech HA, Parsons KC. 2002. Agricultural wetlands and waterbirds: a review. Waterbirds, 25:56-65
    Elgar MA. 1989. Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol Rev, 64:13-33
    Fox AD, Cao L, Zhang Y, Barter M, Zhao MJ, Meng FJ, Wang SL. 2011. Declines in the tuber-feeding waterbird guild at Shengjin Lake National Nature Reserve, China - a barometer of submerged macrophyte collapse. Aquat Conserve, 21(1):82-91
    Fuller RA, Bearhop S, Metcalfe NB, Piersma T. 2013. The effect of group size on vigilance in Ruddy Turnstones Arenaria interpres varies with foraging habitat. Ibis, 155(2):246-257
    Gyimesi A, Franken MS, Feige N, Nolet BA. 2012. Human disturbance of Bewick's Swans is reflected in giving-up net energy intake rate, but not in giving-up food density. Ibis, 154(4):781-790
    Hansen BB, Aanes R, Herfindal I, Sæther BE, Henriksen S. 2009. Winter habitat-space use in a large arctic herbivore facing contrasting forage abundance. Polar Biol, 32(7):971-984
    Heithaus MR. 2005. Habitat use and group size of pied cormorants (Phalacrocorax varius) in a seagrass ecosystem: possible effects of food abundance and predation risk. Mar Biol, 147(1):27-35
    Heithaus MR, Dill LM. 2002. Food availability and tiger shark predation risk affects bottlenose dolphin habitat use. Ecology, 83:480-491
    Jiang HX, Xu WB, Qian FW, Chu GZ. 2007. Impact of habitat evolvement and human disturbance on wintering water birds in Shengjin Lake of Anhui Province, China. Chin J Appl Ecol, 18(8):1832-1836
    Jing K, Ma ZJ, Li B, Li JH, Chen JK. 2007. Foraging strategies involved in habitat use of shorebirds at the intertidal area of Chongming Dongtan, China. Ecol Res, 22(4):559-570
    Kotler BP, Brown JS, Hasson O. 1991. The specter of predation: factors affecting gerbil foraging behavior and rates of owl predation. Ecology, 72(6):2249-2260
    Kuwae T, Miyoshi E, Sassa S, Watabe Y. 2010. Foraging mode shift in varying environmental conditions by dunlin Calidris alpina. Mar Ecol Prog Ser, 406:281-289
    Li CL, Zhou LZ, Li HK, Jiang ZG. 2011. Effects of foraging mode and group pattern on vigilance behavior in water birds: a case study of mallard and black-winged stilt. Belg J Zool, 141(2):45-54
    Li HC, Ding TS, Tsai CF, Hsu FH. 2012. Effects of habitat type and group size on foraging and vigilance behaviors of the Red Collared Dove Streptopelia tranquebarica. Taiwania, 57(2):99-105
    Lima SL. 1998. Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. Adv Stud Behav, 27:215-290
    Lima SL, Dill LM. 1990. Behavioral decision making under the risk of predation: a review and prospectus. Can J Zool, 68(4):619-640
    Liu ZY, Xu WB, Wang QS, Shi KC, Xu JS, Yu GQ. 2001. Environmental carrying capacity for over-wintering Hooded Cranes in Shengjin Lake. Resour Environ Yangtze Basi, 10(5):454-459
    Liu Q, Yang XJ, Zhu JG, Zhao JL, Yu HZ. 2008. Flock of black-necked crane wintering at Napahai nature reserve, China. Zool Res, 29(5):553-560
    Luo JM, Wang YJ, Yang F, Liu ZJ. 2012. Effects of human disturbance on the Hooded Crane (Grus monacha) at stopover sites in northeastern China. Chinese Birds, 3:206-216
    Ma ZJ, Li B, Jing K, Zhao B, Tang SM, Chen JK. 2003. Effects of tidewater on the feeding ecology of Hooded Crane (Grus monacha) and conservation of their wintering habitats at Chongming Dongtan, China. Ecol Res, 18(3):321-329
    Macdonald EC, Ginn MG, Hamilton DJ. 2012. Variability in foraging behavior and implications for diet breadth among Semipalmated sandpipers staging in the upper bay of Fyndy. Condor, 114(1):135-144
    Masatomi H. 2004. Individual (non-social) behavioral acts of Hooded Cranes (Grus monacha) wintering in Izumi, Japan. J Ethol, 22:69-83
    Michelena P, Deneubourg JL. 2011. How group size affects vigilance dynamics and time allocation patterns: the key role of imitation and tempo. PLoS One, 6(4):1-9
    Nystrand M. 2006. Influence of age, kinship, and large-scale habitat quality on local foraging choices of Siberian Jays. Behav Ecol, 17:503-509
    Santangeli A, Dolman PM. 2011. Density and habitat preferences of male little bustard across contrasting agro-pastoral landscapes in Sardinia (Italy). Eur J Wildl Res, 57(4):805-815
    Severcan Ç, Yamac E. 2011. The effects of flock size and human presence on vigilance and feeding behavior in the Eurasian Coot (Fulica atra) during breeding season. Acta Ethol, 14(1):51-56
    Sirot E, Maes P, Gélinaud G. 2012. Movements and conflicts in a flock of foraging Black-Tailed Godwits (Limosa limosa): the influence of feeding rates on behavioural decisions. Ethology, 118(2):127-134
    Terence PB, Sandra MC, Robert GW. 2004. Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America. Wetland Ecol Manage, 12:563-573
    Wang QS. 1988. The Hooded Cranes. Chin J zool, 23(4):30-34
    Wang K, Yang XJ, Zhao JL, Yu HZ, Min L. 2009. Relations of daily activity patterns of age and flock of wintering Black-necked Crane (Grus nigricollis) at Napa Lake, Shangri-La in Yunnan. Zool Res, 30:74-82
    Wang Z, Li ZQ, Beauchamp G, Jiang ZG. 2011. Flock size and human disturbance affect vigilance of endangered red-crowned cranes (Grus japonensis). Biolog Conserv, 144(1):101-105
    Wood C, Qiao Y, Li P, Ding P, Lu BZ, Xi YM. 2010. Implications of rice agriculture for wild birds in China. Waterbirds, 33(1):30-43
    Xu LL, Xu WB, Sun QY, Zhou ZZ, Shen J, Zhao XX. 2008. Flora and vegetation in Shengjin Lake. J Wuhan Bot Res, 27(3):264-270
    Xu F, Ma M, Yang WK, Blank D, Ding P, Zhang T. 2013. Vigilance in Black -Necked Cranes: effects of predation vulnerability and flock size. Wilson J Ornithol, 125(1):208-212
    Yasué M. 2005. The effects of human presence, flock size and prey density on shorebird foraging rates. J Ethol, 23(2):199-204
    Yasué M, Quinn JL, Cresswell W. 2003. Multiple effects of weather on the starvation and predation risk tradeoff in choice of feeding location in redshanks. Funct Ecol, 17:727-736
    Zhao FT, Zhou LZ, Xu WB. 2013. Habitat utilization and resource partitioning of wintering Hooded Cranes and three goose species at Shengjin Lake. Chinese Birds, 4(4):281-290
    Zhou B, Zhou LZ, Chen JY, Xu WB, Cheng YQ. 2009. Assemblage dynamics and territorial behavior of Hooded Cranes wintering in Shengjin Lake. Chin Wildlife, 30(3):133-136
    Zhou B, Zhou LZ, Chen JY, Cheng YQ, Xu WB. 2010. Diurnal time-activity budgets of wintering Hooded Cranes (Grus monacha) in Shengjin Lake, China. Waterbirds, 33(1):110-115
  • Related Articles

  • Cited by

    Periodical cited type(6)

    1. Ibrahim M. Ahmad, Dongming Li. More than a simple egg: Underlying mechanisms of cold tolerance in avian embryos. Avian Research, 2023, 14: 100104. DOI:10.1016/j.avrs.2023.100104
    2. Ava-Rose F Beech, Mattheus C Santos, Emily B Smith, et al. High within-clutch repeatability of eggshell phenotype in Barn Swallows despite less maculated last-laid eggs. Ornithology, 2022, 139(4) DOI:10.1093/ornithology/ukac024
    3. Joanna Rosenbeger, Kamil Pytlak, Ewa Łukaszewicz, et al. Variation in Bird Eggs—Does Female Factor, Season, and Laying Order Impact the Egg Size, Pigmentation, and Eggshell Thickness of the Eggs of Capercaillie?. Animals, 2021, 11(12): 3454. DOI:10.3390/ani11123454
    4. Longwu Wang, Gangbin He, Yuhan Zhang, et al. Cryptic eggs are rejected less frequently by a cuckoo host. Animal Cognition, 2021, 24(6): 1171. DOI:10.1007/s10071-021-01507-2
    5. Wei-Guo Du, Richard Shine, Liang Ma, et al. Adaptive responses of the embryos of birds and reptiles to spatial and temporal variations in nest temperatures. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1915): 20192078. DOI:10.1098/rspb.2019.2078
    6. Ping Ye, Canchao Yang, Wei Liang. Nest site availability and niche differentiation between two cavity‐nesting birds in time and space. Ecology and Evolution, 2019, 9(20): 11904. DOI:10.1002/ece3.5698

    Other cited types(0)

Catalog

    Figures(2)  /  Tables(2)

    Article Metrics

    Article views (243) PDF downloads (14) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return