Xudong Li, Jiangping Yu, Dake Yin, Longru Jin, Keqin Zhang, Li Shen, Zheng Han, Haitao Wang. 2024: Does social information affect the settlement decisions of resident birds in their second breeding attempt? A case study of the Japanese Tit (Parus minor). Avian Research, 15(1): 100198. DOI: 10.1016/j.avrs.2024.100198
Citation: Xudong Li, Jiangping Yu, Dake Yin, Longru Jin, Keqin Zhang, Li Shen, Zheng Han, Haitao Wang. 2024: Does social information affect the settlement decisions of resident birds in their second breeding attempt? A case study of the Japanese Tit (Parus minor). Avian Research, 15(1): 100198. DOI: 10.1016/j.avrs.2024.100198

Does social information affect the settlement decisions of resident birds in their second breeding attempt? A case study of the Japanese Tit (Parus minor)

Funds: 

the National Natural Science Foundation of China 31971402 to H. Wang

the National Natural Science Foundation of China 32001094 to J. Yu

the National Natural Science Foundation of China 31870368 to K. Zhang

the High-level Startup Talents Introduced Scientific Research Fund Project of Baotou Teacher’s College, China BTTCRCQD2024-C34

More Information
  • Corresponding author:

    E-mail address: yujp539@nenu.edu.cn (J. Yu)

    Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Changchun, 130024, China. E-mail address: wanght402@nenu.edu.cn (H. Wang)

  • Received Date: 01 Nov 2023
  • Rev Recd Date: 14 Jul 2024
  • Accepted Date: 21 Jul 2024
  • Publish Date: 23 Jul 2024
  • Individuals may gather information about environmental conditions when deciding where to breed in order to maximize their lifetime fitness. They can obtain social information by observing conspecifics and heterospecifics with similar ecological needs. Many studies have shown that birds can rely on social information to select their nest sites. The location of active nests and the reproductive success of conspecifics and heterospecifics can provide accurate predictions about the quality of the breeding habitat. Some short-lived species can facultatively reproduce two and/or more times within a breeding season. However, few studies have focused on how multiple-brooding individuals select nest sites for their second breeding attempts. In this study, we use long-term data to test whether the Japanese Tit (Parus minor) can use social information from conspecifics and/or heterospecifics (the Eurasian Nuthatch Sitta europaea, the Daurian Redstart Phoenicurus auroreus and the Yellow-rumped Flycatcher Ficedula zanthopygia) to select a nest site for the second breeding attempt. Our results showed that the nest boxes occupied by tits on their second breeding attempt tended to be surrounded by more breeding conspecific nests, successful first nests of conspecifics, and fewer failed first nests of conspecifics than the nest boxes that remained unoccupied (the control group). However, the numbers of breeding heterospecific nests, successful heterospecific nests, and failed heterospecific nests did not differ between the nest boxes occupied by tits on their second breeding attempt and the unoccupied nest boxes. Furthermore, the tits with local successful breeding experience tended to choose areas with more successful first nests of conspecifics than those without successful breeding experience. Thus, we suggest that conspecifics' but not heterospecifics’ social information within the same breeding season is the major factor influencing the nest site selection of Japanese Tits during second breeding attempts.

  • The original version of this article unfortunately contained a mistake. The presentation of Fig. 2 was incorrect. The correct version of presentation of Fig. 2 is given below:

    Fig. 2 Distribution of Jankowski's Bunting. 1, breeding sites in Russia, i.e. Ussuriysk, Erdmana peninsula, Murav'yev-Amurskiy peninsula, Sedimi, Kraskino, Nagornaya, Pos'yeta bay, Krabbe peninsula, Sakpau lake and Tal'mi lake; 2, Manpo; 3, Samjiyon; 4, Hunchun; 5, Dongning; 6, Helong; 7, Antu; 8, Dunhua; 9, Nongan; 10, Lishu; 11, Shuangliao; 12, Changling; 13, Daan; 14, Tongyu; 15, Taonan; 16, Tuquan; 17, Zhenlai; 18, Keerqinyouyizhong Qi; 19, Zhalaite Qi; 20, Qiqihaer; 21, Zhaodong; 22, Harbin; 23, Acheng; 24, Mudanjiang; 25, Liaoyang; 26, Linxi; 27, Beidaihe; 28, Beijing.

  • Acker, P., Besnard, A., Monnat, J.-Y., Cam, E., 2017. Breeding habitat selection across spatial scales: is grass always greener on the other side? Ecology 98, 2684–2697.
    Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48.
    Berg, E.C., Eadie, J.M., 2020. An experimental test of information use by wood ducks (Aix sponsa): external habitat cues, not social visual cues, influence initial nest site selection. Behav. Ecol. Sociobiol. 74, 122.
    Betts, M.G., Hadley, A.S., Rodenhouse, N., Nocera, J.J., 2008. Social information trumps vegetation structure in breeding-site selection by a migrant songbird. Proc. R. Soc. B 275, 2257–2263.
    Bonaparte, E.B., Ibarra, J.T., Cockle, K.L., 2020. Conserving nest trees used by cavity-nesting birds from endangered primary Atlantic forest to open farmland: increased relevance of excavated cavities in large dead trees on farms. For. Ecol. Manag. 475, 118440.
    Brandl, H.B., Griffith, S.C., Schuett, W., 2018. Wild zebra finches do not use social information from conspecific reproductive success for nest site choice and clutch size decisions. Behav. Ecol. Sociobiol. 72, 114.
    Brown, C.R., 2016. The ecology and evolution of colony-size variation. Behav. Ecol. Sociobiol. 70, 1613–1632.
    Buxton, V.L., Enos, J.K., Sperry, J.H., Ward, M.P., 2020. A review of conspecific attraction for habitat selection across taxa. Ecol. Evol. 10, 12690–12699.
    Campobello, D., Sealy, S.G., 2011. Use of social over personal information enhances nest defense against avian brood parasitism. Behav. Ecol. 22, 422–428.
    Chittka, L., Leadbeater, E., 2005. Social learning: public information in insects. Curr. Biol. 15, 869–871.
    Citta, J.J., Lindberg, M.S., 2007. Nest-site selection of passerines: effects of geographic scale and public and personal information. Ecology 88, 2034–2046.
    Clark, R.G., Shutler, D., 1999. Avian habitat selection: pattern from process in nest-site use by ducks? Ecology 80, 272–287.
    Dall, S., Giraldeau, L., Olsson, O., Mcnamara, J., Stephens, D., 2005. Information and its use by animals in evolutionary ecology. Trends Ecol. Evol. 20, 187–193.
    Danchin, É., Giraldeau, L.-A., Valone, T.J., Wagner, R.H., 2004. Public information: from nosy neighbors to cultural evolution. Science 305, 487–491.
    Danchin, E., Wagner, R.H., 1997. The evolution of coloniality: the emergence of new perspectives. Trends Ecol. Evol. 12, 342–347.
    Doligez, B., Danchin, E., Clobert, J., 2002. Public information and breeding habitat selection in a wild bird population. Science 297, 1168–1170.
    Doligez, B., Pärt, T., Danchin, E., Clobert, J., Gustafsson, L., 2004. Availability and use of public information and conspecific density for settlement decisions in the collared flycatcher. J. Anim. Ecol. 73, 75–87.
    Donahue, K.J., Hund, A.K., Levin, I.I., Safran, R.J., 2018. Predictors and consequences of nest-switching behavior in Barn Swallows (Hirundo rustica erythrogaster). Auk 135, 181–191.
    Dyson, M.E., Slattery, S.M., Fedy, B.C., 2019. Microhabitat nest-site selection by ducks in the boreal forest. J. Field Ornithol. 90, 348–360.
    Fan, Q., E, M., Wei, Y., Sun, W., Wang, H., 2021. Mate choice in double-breeding female great tits (Parus major): good males or compatible males. Animals 11, 140.
    Farrell, S.L., Morrison, M.L., Campomizzi, A.J., Wilkins, R.N., 2012. Conspecific cues and breeding habitat selection in an endangered woodland warbler: conspecific cues and habitat selection. J. Anim. Ecol. 81, 1056–1064.
    Feng, C., Yang, C., Liang, W., 2019. Nest-site fidelity and breeding dispersal by Common Tailorbirds in a tropical forest. Avian Res. 10, 45.
    Firth, J.A., Sheldon, B.C., 2015. Experimental manipulation of avian social structure reveals segregation is carried over across contexts. Proc. R. Soc. B 282, 165–183.
    Firth, J.A., Sheldon, B.C., Farine, D.R., 2016. Pathways of information transmission among wild songbirds follow experimentally imposed changes in social foraging structure. Biol. Lett. 12, 20160144.
    Firth, J.A., Verhelst, B.L., Crates, R.A., Garroway, C.J., Sheldon, B.C., 2018. Spatial, temporal and individual-based differences in nest-site visits and subsequent reproductive success in wild great tits. J. Avian Biol. 49, e01740.
    Fletcher, R.J., 2007. Species interactions and population density mediate the use of social cues for habitat selection. J. Anim. Ecol. 76, 598–606.
    Forsman, J.T., Kivelä, S.M., Jaakkonen, T., Seppänen, J.-T., Gustafsson, L., Doligez, B., 2014. Avoiding perceived past resource use of potential competitors affects niche dynamics in a bird community. BMC Evol. Biol. 14, 175.
    Forsman, J.T., Seppänen, J.-T., Mönkkönen, M., 2002. Positive fitness consequences of interspecific interaction with a potential competitor. Proc. R. Soc. B 269, 1619–1623.
    Forsman, J.T., Thomson, R.L., Seppänen, J.-T., 2007. Mechanisms and fitness effects of interspecific information use between migrant and resident birds. Behav. Ecol. 18, 888–894.
    Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression, third ed. Sage, Los Angeles .
    Fragaszy, D.M., Perry, S., 2003. The Biology of Traditions: Models and Evidence. Cambridge University Press, Cambridge. .
    Frommhold, M., Heim, A., Barabanov, M., Maier, F., Mühle, R.-U., Smirenski, S.M., et al., 2019. Breeding habitat and nest-site selection by an obligatory “nest-cleptoparasite”, the Amur Falcon Falco amurensis. Ecol. Evol. 9, 14430–14441.
    García-Navas, V., Sanz, J.J., 2010. Flexibility in the foraging behavior of Blue Tits in response to short-term manipulations of brood size. Ethology 116, 744–754.
    Hegyi, G., Kötél, D., Laczi, M., 2015. Direct benefits of mate choice: a meta-analysis of plumage colour and offspring feeding rates in birds. Naturwissenschaften 102, 62.
    Husby, A., Kruuk, L.E.B., Visser, M.E., 2009. Decline in the frequency and benefits of multiple brooding in great tits as a consequence of a changing environment. Proc. R. Soc. B 276, 1845–1854.
    Jaakkonen, T., Kivelä, S.M., Meier, C.M., Forsman, J.T., 2015. The use and relative importance of intraspecific and interspecific social information in a bird community. Behav. Ecol. 26, 55–64.
    Jackson, W.M., Rohwer, S., Nolan, V., 1989. Within-season breeding dispersal in prairie warblers and other passerines. Condor 91, 233–241.
    Jin, L., Liang, J., Fan, Q., Yu, J., Sun, K., Wang, H., 2021. Male Great Tits (Parus major) adjust dear enemy effect expression in different breeding stages. J. Ornithol. 162, 221–229.
    Jones, A.G., Ratterman, N.L., 2009. Mate choice and sexual selection: what have we learned since Darwin? Proc. Natl. Acad. Sci. U.S.A. 106, 10001–10008.
    Kearns, L.J., Rodewald, A.D., 2013. Within-season use of public and private information on predation risk in nest-site selection. J. Ornithol. 154, 163–172.
    Keating, K.A., Cherry, S., 2004. Use and interpretation of logistic regression in habitatselection studies. J. Wildl. Manag. 68, 774–798.
    Kelly, J.K., Chiavacci, S.J., Benson, T.J., Ward, M.P., 2018. Who is in the neighborhood? Conspecific and heterospecific responses to perceived density for breeding habitat selection. Ethology 124, 269–278.
    Kendal, R.L., Coolen, I., van Bergen, Y., Laland, K.N., 2005. Trade‐offs in the adaptive use of social and asocial learning. Adv. Stud. Behav. 35, 333–379.
    Kivelä, S.M., Seppänen, J.-T., Ovaskainen, O., Doligez, B., Gustafsson, L., Mönkkönen, M., et al., 2014. The past and the present in decision-making: the use of conspecific and heterospecific cues in nest site selection. Ecology 95, 3428–3439.
    Koletsi, D., Pandis, N., 2017. Conditional logistic regression. Am. J. Orthod. Dentofac. 151, 1191–1192.
    Laland, K.N., 2004. Social learning strategies. Learn. Behav. 32, 4–14.
    Laland, K.N., Atton, N., Webster, M.M., 2011. From fish to fashion: experimental and theoretical insights into the evolution of culture. Philos. T. Roy. Soc. B 366, 958–968.
    Lambrechts, M.M., Rieux, A., Galan, M.-J., Cartan-Son, M., Perret, P., Blondel, J., 2008. Double-brooded great tits (Parus major) in Mediterranean oak habitats: do first broods always perform better than second broods? Russ. J. Ecol. 39, 516–522.
    Li, X., Yu, J., Yin, D., Longru, J., Zhang, K., Wang, H., 2023. Using radio frequency identification (RFID) technology to characterize nest site selection in wild Japanese tits Parus minor. J. Avian Biol. 2023, e03108.
    Loukola, O.J., Seppänen, J.-T., Forsman, J.T., 2012. Intraspecific social information use in the selection of nest site characteristics. Anim. Behav. 83, 629–633.
    Martin, P.R., Martin, T.E., 2001. Ecological and fitness consequences of species coexistence: a removal experiment with wood warblers. Ecology 82, 189–206.
    Martin, T.E., 1993. Nest predation and nest sites. Bioscience 43, 523–532.
    Melles, S., Glenn, S.M., Martin, K., 2003. Urban bird diversity and landscape complexity: species-environment associations along a multiscale habitat gradient. Conserv. Ecol. 7, 5.
    Morinay, J., De Pascalis, F., Dominoni, D.M., Morganti, M., Pezzo, F., Pirrello, S., et al., 2021. Combining social information use and comfort seeking for nest site selection in a cavity-nesting raptor. Anim. Behav. 180, 167–178.
    Nilsson, S.G., 1984. The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition. Ornis Scand. 15, 167.
    Nomi, D., Yuta, T., Koizumi, I., 2018. Male feeding contribution facilitates multiple brooding in a biparental songbird. Ibis 160, 293–300.
    O'Brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. Qual. Quantity 41, 673–690.
    Page, R.A., Bernal, X.E., 2020. The challenge of detecting prey: private and social information use in predatory bats. Funct. Ecol. 34, 344–363.
    Parejo, D., Danchin, E., Avilés, J.M., 2005. The heterospecific habitat copying hypothesis: can competitors indicate habitat quality? Behav. Ecol. 16, 96–105.
    Parejo, D., White, J., Danchin, E., 2007. Settlement decisions in blue tits: difference in the use of social information according to age and individual success. Naturwissenschaften 94, 749–757.
    Pärt, T., Arlt, D., Doligez, B., Low, M., Qvarnström, A., 2011. Prospectors combine social and environmental information to improve habitat selection and breeding success in the subsequent year. J. Anim. Ecol. 80, 1227–1235.
    Pearce, J., Ferrier, S., 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245.
    Peterson, A.T., 2006. Uses and requirements of ecological Niche models and relateddistributional models. Biodivers. Inf. 3, 59–72.
    Podofillini, S., Cecere, J.G., Griggio, M., Curcio, A., De Capua, E.L., Fulco, E., et al., 2018. Home, dirty home: effect of old nest material on nest-site selection and breeding performance in a cavity-nesting raptor. Curr. Zool. 64, 693–702.
    Ponchon, A., Chambert, T., Lobato, E., Tveraa, T., Grémillet, D., Boulinier, T., 2015. Breeding failure induces large scale prospecting movements in the black-legged kittiwake. J. Exp. Mar. Biol. Ecol. 473, 138–145.
    R Core Team, 2023. R: a Language and Environment for Statistical Computing.
    Redmond, L.J., Murphy, M.T., Dolan, A.C., Sexton, K., 2009. Public information facilitates habitat selection of a territorial species: the eastern kingbird. Anim. Behav. 77, 457–463.
    Roberts, G., 1996. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086.
    Safran, R.J., 2004. Adaptive site selection rules and variation in group size of Barn Swallows: individual decisions predict population patterns. Am. Antiq. 164, 121–131.
    Safran, R.J., 2006. Nest-site selection in the barn swallow, Hirundo rustica: what predicts seasonal reproductive success? Can. J. Physiol. Pharmacol. 84, 1533–1539.
    Schmidt, K.A., Dall, S.R.X., van Gils, J.A., 2010. The ecology of information: an overview on the ecological significance of making informed decisions. Oikos 119, 304–316.
    Schuett, W., Järvistö, P.E., Calhim, S., Velmala, W., Laaksonen, T., 2017. Nosy neighbours: large broods attract more visitors. A field experiment in the pied flycatcher, Ficedula hypoleuca. Oecologia 184, 115–126.
    Seppänen, J.-T., Forsman, J.T., Mönkkönen, M., Thomson, R.L., 2007. Social information use is a process across time, space, and ecology, reaching heterospecifics. Ecology 88, 1622–1633.
    Serrano, D., Tella, J.L., Forero, M.G., Donázar, J.A., 2001. Factors affecting breeding dispersal in the facultatively colonial lesser kestrel: individual experience vs. conspecific cues. J. Anim. Ecol. 70, 568–578.
    Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., 2005. ROCR: visualizing clasiffier performance in R. Bioinformatics 21, 3940–3941.
    Slagsvold, T., Wiebe, K.L., 2011. Social learning in birds and its role in shaping a foraging niche. Philos. T. Roy. Soc. B 366, 969–977.
    Slagsvold, T., Wigdahl Kleiven, K., Eriksen, A., Johannessen, L.E., 2013. Vertical and horizontal transmission of nest site preferences in titmice. Anim. Behav. 85, 323–328.
    Styrsky, J.N., 2005. Influence of predation on nest-site reuse by an open-cup nesting neotropical passerine. Condor 107, 133–137.
    Swanson, E.M., Tekmen, S.M., Bee, M.A., 2007. Do female frogs exploit inadvertent social information to locate breeding aggregations? Can. J. Zool. 85, 921–932.
    Szymkowiak, J., Thomson, R.L., Kuczyński, L., 2016. Wood warblers copy settlement decisions of poor quality conspecifics: support for the tradeoff between the benefit of social information use and competition avoidance. Oikos 125, 1561–1569.
    Therneau, T., 2015. A package for survival analysis in S. Version 3.5-5. .
    Thorogood, R., Davies, N.B., 2012. Cuckoos combat socially transmitted defenses of Reed Warbler hosts with a plumage polymorphism. Science 337, 578–580.
    Tolvanen, J., Kivelä, S.M., Doligez, B., Morinay, J., Gustafsson, L., Bijma, P., et al., 2020. Quantitative genetics of the use of conspecific and heterospecific social cues for breeding site choice. Evolution 74, 2332–2347.
    Vale, G.L., Flynn, E.G., Lambeth, S.P., Schapiro, S.J., Kendal, R.L., 2014. Public information use in chimpanzees (Pan troglodytes) and children (Homo sapiens). J. Comp. Psychol. 128, 215–223.
    Valente, J.J., Nelson, S.K., Rivers, J.W., Roby, D.D., Betts, M.G., 2021. Experimental evidence that social information affects habitat selection in Marbled Murrelets. Ornithology 138, ukaa086.
    Valone, T.J., 2007. From eavesdropping on performance to copying the behavior of others: a review of public information use. Behav. Ecol. Sociobiol. 62, 1–14.
    van Bergen, Y., Coolen, I., Laland, K.N., 2004. Nine-spined sticklebacks exploit the most reliable source when public and private information conflict. Proc. R. Soc. B 271, 957–962.
    Veit, L., Pidpruzhnykova, G., Nieder, A., 2015. Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows. Proc. Natl. Acad. Sci. U.S.A. 112, 15208–15213.
    Webster, M.M., Hart, P.J.B., 2006. Subhabitat selection by foraging threespine stickleback (Gasterosteus aculeatus): previous experience and social conformity. Behav. Ecol. Sociobiol. 60, 77–86.
    Webster, M.M., Laland, K.N., 2008. Social learning strategies and predation risk: minnows copy only when using private information would be costly. Proc. R. Soc. B 275, 2869–2876.
    Yu, J., Lv, W., Xu, H., Bibi, N., Yu, Y., Jiang, Y., et al., 2017. Function of note strings in Japanese Tit alarm calls to the Common Cuckoo: a playback experiment. Avian Res. 8, 22.
  • Related Articles

Catalog

    Figures(4)  /  Tables(2)

    Article Metrics

    Article views (40) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return