Alberti, M., 2005. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 28, 168–192. .
|
Alberts, J.M., Sullivan, S.M. P, Kautza, A., 2013. Riparian swallows as integrators of landscape change in a multiuse river system: Implications for aquatic-to-terrestrial transfers of contaminants. Sci. Total Environ. 463–464, 42–50. .
|
Arcdata Praha, 2016. ArcČR® 500: Digitální vektorová geografická databáze České republiky. In: ArcČR® 500 Verze 3, vol. 3. . (Accessed 27 December 2018).
|
Assandri, G., Bogliani, G., Pedrini, P., Brambilla, M., 2017. Insectivorous birds as 'non-traditional' flagship species in vineyards: Applying a neglected conservation paradigm to agricultural systems. Ecol. Indicat. 80, 275–285. .
|
Atkinson, P.W., Fuller, R.J., Vickery, J.A., Conway, G.J., Tallowin, J.R.B., Smith, R.E.N., et al., 2005. Influence of agricultural management, sward structure and food resources on grassland field use by birds in lowland England: Factors influencing field use by grassland birds. J. Appl. Ecol. 42, 932–942. .
|
Bartoń, K., 2022. MuMIn: Multi-Model Inference. Version 1.46.0. .
|
Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. .
|
Beauchamp, G., 2015. Visual obstruction and vigilance: a natural experiment. J. Avian Biol. 46, 476–481. .
|
Bellavance, V., Bélisle, M., Savage, J., Pelletier, F., Garant, D., 2018. Influence of agricultural intensification on prey availability and nestling diet in Tree Swallows ( Tachycineta bicolor). Can. J. Zool. 96, 1053–1065. .
|
Boukhemza-Zemmouri, N., Farhi, Y., Mohamed Sahnoun, A., Boukhemza, M., 2013. Diet composition and prey choice by the House Martin Delichon urbica (Aves: Hirundinidae) during the breeding period in Kabylia, Algeria. Ital. J. Zool. 80, 117–124. .
|
Bouldin, L.E., 1968. The population of the House Martin Delichon urbica in East Lancashire. Hous. Theor. Soc. 15, 135–146. .
|
Boynton, C.K., Mahony, N.A., Williams, T.D., 2020. Barn Swallow ( Hirundo rustica) fledglings use crop habitat more frequently in relation to its availability than pasture and other habitat types. Condor 122, duz067. .
|
Braubach, M., Egorov, A., Mudu, P., Wolf, T., Ward Thompson, C., Martuzzi, M., 2017. Effects of urban green space on environmental health, equity and resilience. In: Kabisch, N., Korn, H., Stadler, J., Bonn, A. (Eds. ), Nature-Based Solutions to Climate Change Adaptation in Urban Areas. Springer International Publishing, Cham pp. 187–205. .
|
Brlík, V., Šilarová, E., Škorpilová, J., Alonso, H., Anton, M., Aunins, A., et al., 2021. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci Data 8, 21. .
|
Bruggisser, O.T., Schmidt-Entling, M.H., Bacher, S., 2010. Effects of vineyard management on biodiversity at three trophic levels. Biol. Conserv. 143, 1521–1528. .
|
Bryant, D.M., 2008. Breeding biology of house martins Delichon urbica in relation to aerial insect abundance. Ibis 117, 180–216. .
|
Bulgarella, M., Quiroga, M.A., Heimpel, G.E., 2019. Additive negative effects of Philornis nest parasitism on small and declining Neotropical bird populations. Bird Conserv. Int. 29, 339–360. .
|
Burns, F., Eaton, M.A., Burfield, I.J., Klvaňová, A., Šilarová, E., Staneva, A., et al., 2021. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 11, 16647–16660. .
|
Cade, B.S., 2015. Model averaging and muddled multimodel inferences Ecology 96, 2370–2382. .
|
Callaghan, C.T., Poore, A.G.B., Hofmann, M., Roberts, C.J., Pereira, H.M., 2021. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073. .
|
Cepák, J., 2013. Atlas Migrace Ptákċ České a Slovenské Republiky. Aventium, Praha.
|
Cherkaoui, I., Hanane, S., 2011. Status and breeding biology of Northern Lapwings Vanellus vanellus in the Gharb coastal wetlands of northern Morocco. Wader Study Group Bull. 118, 49–54.
|
Claro, H., Rossi, R., Hannibal, W., 2020. Bird communities in urban habitat: the importance of vegetation in city squares. Rev. Sap. 9, 201–217.
|
Cody, M.L., 1985. Habitat Selection in Birds. Academic Press, Orlando.
|
Collias, N.E., Collias, E.C., 1984. Nest Building and Bird Behavior. Princeton University Press, Princeton.
|
Cramp, S., Gooders, J., 1967. The return of the house martin. London Bird Rep. 31, 93–98.
|
CSO (the Czech Society for Ornithology), 2009–2017. Faunistická databáze. Pozorování. . (Accessed 6 May 2018).
|
CZSO (the Czech Statistical Office), 2009–2017. Územnc analytické podklady. Datové Vrstvy Pro GIS 2017. . (Accessed 26 May 2018).
|
CSO, 2020. Jednotný program sčítání ptáků. Indexy a trendy 2021 - jiřička obecná. . (Accessed 3 Mar 2022).
|
Diener, A., Mudu, P., 2021. How can vegetation protect us from air pollution? A critical review on green spaces' mitigation abilities for air-borne particles from a public health perspective-with implications for urban planning. Sci. Total Environ. 796, 148605. .
|
Dolenec, Z., Dolenec, P., 2011. Spring migration characteristics of the House Martin, Delichon urbica (Aves: Hirundinidae) in Croatia: A response to climate change? Zoologia 28, 139–141. .
|
Dreelin, R.A., Shipley, J.R., Winkler, D.W., 2018. Flight behavior of individual aerial insectivores revealed by novel altitudinal dataloggers. Front. Ecol. Evol. 6, 182. .
|
Dvořáková, D., Šipoš, J., Suchomel, J., 2023. Impact of agricultural landscape structure on the patterns of bird species diversity at a regional scale. Avian Res. 14, 100147. .
|
Elkins, N., 2010. Weather and Bird Behaviour. Bloomsbury Publishing, London.
|
Esri, 2019. ArcGIS Desktop. Version 10.6.1. Environmental Systems Research Institute, Redlands: CA. .
|
Esri, 2021. ArcGIS Pro. Version 2.9.2. Environmental Systems Research Institute, Redlands: CA. .
|
European Environment Agency, 2019. CORINE Land Cover 2012 (raster 100 m), Europe, 6-yearly, version 2020_20u1, May 2020. .
|
Fahrig, L., Girard, J., Duro, D., Pasher, J., Smith, A., Javorek, S., et al., 2015. Farmlands with smaller crop fields have higher within-field biodiversity. Agr. Ecosyst. Environ. 200, 219–234. .
|
Forrest, J.R., 2016. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54. .
|
Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression, third ed. SAGE, Los Angeles.
|
Fretwell, S.D., Lucas, H.L., 1969. On territorial behavior and other factors influencing habitat distribution in birds: I. Theoretical development. Acta Biotheor. 19, 16–36. .
|
Garrett, D.R., Pelletier, F., Garant, D., Bélisle, M., 2022a. Combined influence of food availability and agricultural intensification on a declining aerial insectivore. Ecol. Monogr. 92, e1518. .
|
Garrett, D.R., Pelletier, F., Garant, D., Bélisle, M., 2022b. Negative effects of agricultural intensification on the food provisioning rate of a declining aerial insectivore. Ecosphere 13, e4227. .
|
Gaston, K.J., 2011. Common ecology. BioScience 61, 354–362. .
|
Gross, M., 2015. Europe's bird populations in decline. Curr. Biol. 25, R483-R485. .
|
Grüebler, M.U., Korner-Nievergelt, F., Von Hirschheydt, J., 2010. The reproductive benefits of livestock farming in barn swallows Hirundo rustica: quality of nest site or foraging habitat? Benefits of livestock farming. J. Appl. Ecol. 47, 1340–1347. .
|
Guilherme, J.L., Miguel Pereira, H., 2013. Adaptation of bird communities to farmland abandonment in a mountain landscape. PLoS One 8, e73619. .
|
Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., et al., 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809. .
|
Hamilton, N.E., Ferry, M., 2018. ggtern: Ternary Diagrams Using ggplot2. J. Stat. Softw. 87, 1–17. .
|
Hauner, M., Blazek, M., Osborne, R.H., Carter, F.W., Zeman, Z.A.B., Auty, R., 2024. Czech Republic. Encyclopedia Britannica. . (Accessed 27 April 2024).
|
Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., et al., 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748. .
|
Hertzog, L.R., Frank, C., Klimek, S., Röder, N., Böhner, H.G.S., Kamp, J., 2021. Model-based integration of citizen science data from disparate sources increases the precision of bird population trends. Divers. Distrib. 27, 1106–1119. .
|
Hildén, O., 1965. Habitat selection in birds: A review. Ann. Zool. Fenn. 2, 53–75.
|
Imlay, T.L., Leonard, M.L., 2019. A review of the threats to adult survival for swallows (Family: Hirundinidae). Bird Study 66, 251–263. .
|
Inger, R., Gregory, R., Duffy, J.P., Stott, I., Voříšek, P., Gaston, K.J., 2015. Common European birds are declining rapidly while less abundant species' numbers are rising. Ecol. Lett. 18, 28–36. .
|
Isaksson, C., 2018. Impact of urbanization on birds. In: Tietze, D.T. (Ed. ), Bird Species. Springer International Publishing, Cham pp. 235–257. .
|
IUCN, 2016. Delichon urbicum: BirdLife International. The IUCN Red List of Threatened Species, p. 2017. .
|
Izakovičová, Z., Mederly, P., Petrovič, F., 2017. Long-term land use changes driven by urbanisation and their environmental effects (example of Trnava City, Slovakia). Sustainability 9, 1553. .
|
James Reynolds, S., Ibáñez-Álamo, J.D., Sumasgutner, P., Mainwaring, M.C., 2019. Urbanisation and nest building in birds: a review of threats and opportunities. J. Ornithol. 160, 841–860. .
|
Jasso, L., 2017. Jiřička obecná (Delichon urbicum) kořistí ťuhýka obecného (Lanius collurio). Sylvia 2017, 65–69.
|
Johnston, A., Moran, N., Musgrove, A., Fink, D., Baillie, S.R., 2020. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927. .
|
Jones, E.L., Leather, S.R., 2012. Invertebrates in urban areas: A review. Eur. J. Entomol. 109, 463–478. .
|
Kettel, E.F., Woodward, I.D., Balmer, D.E., Noble, D.G., 2021. Using citizen science to assess drivers of Common House Martin Delichon urbicum breeding performance. Ibis 163, 366–379. .
|
Kopij, G., 2000. Diet of swifts (Apodidae) and swallows (Hirundinidae) during the breeding season in South African grassland. Acta Ornithol. 35, 203–206. .
|
Leveau, L.M., Ruggiero, A., Matthews, T.J., Isabel Bellocq, M., 2019. A global consistent positive effect of urban green area size on bird richness. Avian Res, 10, 30. .
|
Linhart, C., Niedrist, G.H., Nagler, M., Nagrani, R., Temml, V., Bardelli, T., et al., 2019. Pesticide contamination and associated risk factors at public playgrounds near intensively managed apple and wine orchards. Environ. Sci. Eur. 31, 28. .
|
Loss, S.R., Will, T., Marra, P.P., 2013. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396. .
|
Lovette, I.J., Fitzpatrick, J.W., 2016. Cornell Lab of Ornithology's Handbook of Bird Biology, Third edition. John Wiley & Sons, Inc, Chichester, West Sussex.
|
Manning, D.W.P., Sullivan, S.M.P., 2021. Conservation across aquatic-terrestrial boundaries: Linking continental-scale water quality to emergent aquatic insects and declining aerial insectivorous birds. Front. Ecol. Evol. 9, 633160. .
|
McClure, C.J.W., Rolek, B.W., McDonald, K., Hill, G.E., 2012. Climate change and the decline of a once common bird: Climate change and blackbird decline. Ecol. Evol. 2, 370–378. .
|
Mikusiński, G., Roberge, J-M., Fuller, R.J., 2018. Ecology and Conservation of Forest Birds. Cambridge University Press, Cambridge.
|
Møller, A.P., Czeszczewik, D., Flensted-Jensen, E., Erritzøe, J., Krams, I., Laursen, K., et al., 2021. Abundance of insects and aerial insectivorous birds in relation to pesticide and fertilizer use. Avian Res. 12, 43. .
|
Murgui, E., 2002. Breeding habitat selection in the House Martin Delichon urbica in the city of Valencia (Spain). Acta Ornithol. 37, 75–83. .
|
NASA Earth Observations, 2009–2017. Normalized difference vegetation index. Vegetation Index (1 Month - Terra/MODIS). NASA. . (Accessed 8 November 2018).
|
Newman, J.R., Novakova, E., McClave, J.T., 1985. The influence of industrial air emissions on the nesting ecology of the house martin Delichon urbica in Czechoslovakia. Biol. Conserv. 31, 229–248. .
|
Paiola, A., Assandri, G., Brambilla, M., Zottini, M., Pedrini, P., Nascimbene, J., 2020. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: A global-scale systematic review. Sci. Total Environ. 706, 135839. .
|
Pedersen, C., Krøgli, S.O., 2017. The effect of land type diversity and spatial heterogeneity on farmland birds in Norway. Ecol. Ind. 75, 155–163. .
|
Pellissier, V., Cohen, M., Boulay, A., Clergeau, P., 2012. Birds are also sensitive to landscape composition and configuration within the city centre. Landscape Urban Plan. 104, 181–188. .
|
Piersma, T., 2013. Timing, nest site selection and multiple breeding in House Martins: Age-related variation and the preference for self-built mud nests. Ardea 101, 23–32. .
|
Ptaszyk, J., 2001. Nesting of the House Martin Delichon urbica in the city of Poznań (1976–1978 and 1982–1989). Acta Ornithol. 36, 135–142. .
|
Pykal, J., Mikuláš, I., Vlček, J., Volf, O., 2021. Rozšíření a odhad početnosti chřástala polního (Crex crex) v České republice v roce 2020 a dlouhodobé trendy početnosti ve vybraných oblastech. Sylvia 57, 3–19.
|
R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. .
|
Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A., 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000: Global Agricultural Lands in 2000. Global Biogeochem. Cy. 22, GB1003. .
|
Reif, J., Hanzelka, J., 2016. Grassland winners and arable land losers: The effects of post-totalitarian land use changes on long-term population trends of farmland birds. Agr. Ecosyst. Environ. 232, 208–217. .
|
Richard, F-J., Southern, I., Gigauri, M., Bellini, G., Rojas, O., Runde, A., 2021. Warning on nine pollutants and their effects on avian communities. Global Ecol. Conserv. 32, e01898. .
|
Robinson, R.A., Wilson, J.D., Crick, H.Q.P., 2001. The importance of arable habitat for farmland birds in grassland landscapes: Arable pockets and bird numbers. J. Appl. Ecol. 38, 1059–1069. .
|
Sánchez-Bayo, F., Wyckhuys, K.A.G., 2019. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. .
|
Schlesinger, M.D., Manley, P.N., Holyoak, M., 2008. Distinguishing stressors acting on land bird communities in an urbanizing environment. Ecology 89, 2302–2314. .
|
Schrauth, F., Wink, M., 2018. Changes in species composition of birds and declining number of breeding territories over 40 years in a nature conservation area in Southwest Germany. Diversity 10, 97. .
|
Shen, F-Y., Ding, T-S., Tsai, J-S., 2023. Comparing avian species richness estimates from structured and semi-structured citizen science data. Sci. Rep. 13, 1214. .
|
Shortall, C.R., Moore, A., Smith, E., Hall, M.J., Woiwod, I.P., Harrington, R., 2009. Long-term changes in the abundance of flying insects. Insect Conserv. Divers. 2, 251–260. .
|
Silva, C.P., García, C.E., Estay, S.A., Barbosa, O., 2015. Bird richness and abundance in response to urban form in a Latin American City: Valdivia, Chile as a case study. PLoS One 10, e0138120. .
|
Sisterson, M.S., Dwyer, D.P., Uchima, S.Y., 2020. Insect diversity in vineyards, almond orchards, olive orchards, alfalfa fields, and pastures in the San Joaquin Valley of California. J. Insect Conserv. 24, 765–777. .
|
Šálek, M., Kalinová, K., Daňková, R., Grill, S., Żmihorski, M., 2021. Reduced diversity of farmland birds in homogenized agricultural landscape: A cross-border comparison over the former Iron Curtain. Agr. Ecosyst. Environ. 321, 107628. .
|
Šálek, M., Mayer, M., 2022. Farmstead modernization adversely affects farmland birds. J. Appl. Ecol. 60, 101–110. .
|
Šťastný, K., Bejček, V., Mikuláš, I., Telecký, T., 2021. Atlas Hnízdního Rozšíření Ptákċ V České Republice 2014–2017. Aventinum, Praha.
|
Šťastný, K., Hudec, K., 2011. Ptáci = Aves, Díl 3/1. Přepracované a Doplněné Vydání. Academia, Praha.
|
Stenroth, K., Polvi, L.E., Fältström, E., Jonsson, M., 2015. Land-use effects on terrestrial consumers through changed size structure of aquatic insects. Freshw. Biol. 60, 136–149. .
|
Sullivan, S.M.P., Corra, J.W., Hayes, J.T., 2021. Urbanization mediates the effects of water quality and climate on a model aerial insectivorous bird. Ecol. Monogr. 91, e01442. .
|
Tomás, G., Martín-Gálvez, D., Ruiz-Rodríguez, M., Soler, J.J., 2017. Intraspecific avian brood parasites avoid host nests infested by ectoparasites. J. Ornithol. 158, 561–567. .
|
Tsikalas, S.G., Butler, D.R., 2015. Geomorphic impacts of mud-nesting swallows in Central Texas. Phys. Geogr. 36, 239–253. .
|
Tuanmu, M-N., Jetz, W., 2014. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling: Consensus land cover. Global Ecol. Biogeogr. 23, 1031–1045. .
|
Tuanmu, M-N., Jetz, W., 2015. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling: Global habitat heterogeneity. Global Ecol. Biogeogr. 24, 1329–1339. .
|
Turner, A., 1982. Counts of aerial-feeding birds in relation to pollution levels. Bird Study 29, 221–226. .
|
Turner, A., Rose, C., 1989. A Handbook to the Swallows and Martins of the World. Christopher Helm, London Bromley.
|
Uesugi, A., Murakami, M., 2007. Do seasonally fluctuating aquatic subsidies influence the distribution pattern of birds between riparian and upland forests? Ecol. Res. 22, 274–281. .
|
Urban, M.C., Skelly, D.K., Burchsted, D., Price, W., Lowry, S., 2006. Stream communities across a rural-urban landscape gradient. Divers. Distrib. 12, 337–350. .
|
Viktora, L., 2020. Metodika Registrace Hnízd Jiřička Obecné ( Delichon urbicum). Česká Společnost Ornitologická. . (Accessed 24 May 2022).
|
Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R., Stopak, D., 2021. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. U.S.A. 118, e2023989118. .
|
Zámečník, V., 2013. Metodická Příručka pro Praktickou Ochranu ptáků v Zemědělské Krajině: Metodika AOPK ČR. Agentura Ochrany Přírody a Krajiny ČR. Praha.
|
Žibret, G., Gosar, M., Miler, M., Alijagić, J., 2018. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies. Land Degrad. Dev. 29, 4457–4470. .
|