Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Mengzhen Wang, Wenwen Chen, Chunlin Li, Jinming Zhao. 2022: Definition of spatial positions within foraging Greater White-fronted Geese flocks from an individual's perspective: Cost-benefit dynamics change with the distance to flock edge. Avian Research, 13(1): 100056. doi: 10.1016/j.avrs.2022.100056
Citation: Mengzhen Wang, Wenwen Chen, Chunlin Li, Jinming Zhao. 2022: Definition of spatial positions within foraging Greater White-fronted Geese flocks from an individual's perspective: Cost-benefit dynamics change with the distance to flock edge. Avian Research, 13(1): 100056. doi: 10.1016/j.avrs.2022.100056

Definition of spatial positions within foraging Greater White-fronted Geese flocks from an individual's perspective: Cost-benefit dynamics change with the distance to flock edge

doi: 10.1016/j.avrs.2022.100056
More Information
  • Corresponding author: E-mail address: zhaojm2022@163.com (J. Zhao)
  • Received Date: 28 Apr 2022
  • Accepted Date: 01 Aug 2022
  • Rev Recd Date: 13 Jul 2022
  • Available Online: 12 Jan 2023
  • Publish Date: 26 Aug 2022
  • The costs and benefits of group living are not evenly distributed among individuals that occupy different spatial positions within a group (central or peripheral). However, the definitions of central and peripheral positions may artificially mask the true dynamics of cost and benefit of individuals. Using wintering foraging Greater White-fronted Geese (Anser albifrons) flocks as our study system, we measured individual spatial position within a flock as distance to the flock edge. First, we tested the effects of distance to edge on the antipredation cost and foraging benefit of individual goose using generalized linear mixed models (GLMMs). Flock size and number of neighbors and their interactions with distance to edge were included as fixed effects in GLMMs. Then we used piecewise regression to determine the threshold value of distance to edge to classify central and peripheral individuals. Our results indicated distance to edge significantly affected percent of time spent on vigilance (vigilance time), percent of time spent on foraging (foraging time) and intake rate (pecks/min), whereas other factors had no effects. We found that the critical distance that predicted changes in behavior was around 2.5 ​m. Birds 2.5 ​m or less from the edge of the group were more vigilant, and had less efficient foraging than more central individuals. Behavioral differences between central and peripheral individuals were more easily detected when the birds were classified by the method introduced in this study than by the traditional minimum convex polygon method. Our research provides researchers a dichotomous classification scheme that places individuals into peripheral and central positions from an individual's perspective.


  • 1 These authors contributed equally to this work.
  • loading
  • Beauchamp, G., 1998. The effect of group size on mean food intake rate in birds. Biol. Rev. 73, 449-472. doi: 10.1017/S0006323198005246
    Beauchamp, G., 2008. What is the magnitude of the group-size effect on vigilance? Behav. Ecol. 19, 1361-1368. doi: 10.1093/beheco/arn096
    Beauchamp, G., 2015. Animal Vigilance: Monitoring Predators and Competitors. Academy Press, London.
    Beauchamp, G., 2017. Disentangling the various mechanisms that account for the decline in vigilance with group size. Behav. Process. 136, 59-63. doi: 10.1016/j.beproc.2017.01.014
    Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., et al., 2008. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127-135.
    Christman, M.C., Lewis, D., 2005. Spatial distribution of dominant animals within a group: comparison of four statistical tests of location. Anim. Behav. 70, 73-82. doi: 10.1016/j.anbehav.2004.09.018
    Cleveland, W.S. 1979. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829-836. doi: 10.1080/01621459.1979.10481038
    Dias, R.I., 2006. Effects of position and flock size on vigilance and foraging behaviour of the scaled dove Columbina squammata. Behav. Process. 73, 248-252. doi: 10.1016/j.beproc.2006.06.002
    Duffield, C., Ioannou, C., 2017. Marginal predation: do encounter or confusion effects explain the targeting of prey group edges? Behav. Ecol. 28, 1283-1292. doi: 10.1093/beheco/arx090
    Emmerton, J., Delius, J., 1993. Beyond sensation: visual cognition in pigeons. In: Zeigler, H. P., Bischof, H.J. (Eds. ), Vision, Brain, and Behavior in Birds. MIT Press, Cambridge, pp. 377-390.
    Favreau, F.R., Goldizen, A.W., Pays. O., 2010. Interactions among social monitoring, anti-predator vigilance and group size in eastern grey kangaroos. P. Roy. Soc. Lond. B. Biol. 277, 2089-2095. doi: 10.1098/rspb.2009.2337
    Fernández-Juricic, E., Beauchamp, G., 2008. An experimental analysis of spatial position effects on foraging and vigilance in brown-headed cowbird flocks. Ethology 114, 105-114. doi: 10.1111/j.1439-0310.2007.01433.x
    Fox, A.D., Elmberg, J., Tombre, I.M., Hessel, R., 2016. Agriculture and herbivorous waterfowl: a review of the scientific basis for improved management. Biol. Rev. Camb. Philos. Soc. 92, 854-877.
    Gil, M.A., Hein, A.M., Spiegel, O., Baskett, M.L., Sih, A., 2018. Social information links individual behavior to population and community dynamics. Trends Ecol. Evol. 33, 535-548. doi: 10.1016/j.tree.2018.04.010
    Hall, C.L., Fedigan. L.M., 1997. Spatial benefits afforded by high rank in white-faced capuchins. Anim. Behav. 53, 1069-1082. doi: 10.1006/anbe.1996.0392
    Hansen, M.J., Schaerf, T.M., Krause, J., Ward, A.J.W., 2016. Crimson spotted rainbowfish (Melanotaenia duboulayi) change their spatial position according to nutritional requirement. PLoS ONE 11, e0148334. doi: 10.1371/journal.pone.0148334
    Hirsch, B.T., 2007a. Costs and benefits of within-group spatial position: a feeding competition model. Q. Rev. Biol. 82, 9-27. doi: 10.1086/511657
    Hirsch, B.T., 2007b. Within-Group Spatial Position in Ring-Tailed Coatis (Nasua Nasua): Balancing Predation, Feeding Success, and Social Competition. Doctoral Thesis. Stony Brook University, New York.
    Hirsch, B.T., 2011a. Spatial position and feeding success in ring-tailed coatis. Behav. Ecol. Sociobiol. 65, 581-591. doi: 10.1007/s00265-010-1058-1
    Hirsch, B.T., 2011b. Within-group spatial position in ring-tailed coatis: balancing predation, feeding competition, and social competition. Behav. Ecol. Sociobiol. 65, 391-399. doi: 10.1007/s00265-010-1056-3
    Hirsch, B.T., Morrell, L.J., 2011. Measuring marginal predation in animal groups. Behav. Ecol. 22, 648-656. doi: 10.1093/beheco/arr026
    Hogan, B.G., Hildenbrandt, H., Scottsamuel, N., Cuthill, I., Hemelrijk, C., 2017. The confusion effect when attacking simulated three-dimensional starling flocks. Roy. Soc. Open Sci. 4, 160564. doi: 10.1098/rsos.160564
    Inglis, I.R., Lazarus, J., 1981. Vigilance and flock size in brent geese: the edge effect. Ethology 57, 193-200. doi: 10.1111/j.1439-0310.1981.tb01921.x
    Ioannou, C.C., 2017a. Grouping and predation. In: Shackelford, T.K., Weekes-Shackelford, V.A. (Eds. ), Encyclopedia of Evolutionary Psychological Science. Springer, Cham, pp. 3574-3580.
    Ioannou, C.C., 2017b. Swarm intelligence in fish? The difficulty in demonstrating distributed and self-organised collective intelligence in (some) animal groups. Behav. Process. 141, 141-151. doi: 10.1016/j.beproc.2016.10.005
    Killen, S.S., Marras, S., Steffensen, J.F., Mckenzie, D.J., 2011. Aerobic capacity influences the spatial position of individuals within fish schools. P. Roy. Soc. Lond. B. Biol. 279, 357-364.
    Koffijberg, K., 2006. Identification and moult patterns in first-year greater white-fronted goose Anser a. albifrons at the wintering grounds. Limosa 79, 163-168.
    Kopachena, J.G., 1987. Variations in the temporal spacing of Franklin's gull (Larus pipixcan) flocks. Can. J. Zool. 65, 2450-2457. doi: 10.1139/z87-370
    Kotrschal, K., Hemetsberger, J., Dittami, J., 1993. Food exploitation by a winter flock of greylag geese: behavioral dynamics, competition and social status. Behav. Ecol. Sociobiol. 33, 289-295.
    Krause, J., 1994. Differential fitness returns in relation to spatial position in groups. Biol. Rev. Camb. Philos. Soc. 69, 187-206. doi: 10.1111/j.1469-185X.1994.tb01505.x
    Krause, J., Ruxton, G.D., 2002. Living in Group. Oxford University Press, Oxford.
    Landeau, L., Terborgh, J., 1986. Oddity and the 'confusion effect' in predation. Anim. Behav. 34, 1372-1380. doi: 10.1016/S0003-3472(86)80208-1
    Matson, T.K., Goldizen, A.W., Putland, D.A., 2005. Factors affecting the vigilance and flight behaviour of impalas. S. Afr. J. Wildl. Res. 35, 1-11.
    Morrella, L.J., Romey, W.L., 2008. Optimal individual positions within animal groups. Behav. Ecol. 19, 909-919. doi: 10.1093/beheco/arn050
    Pujol, A., García, D., Obradors, A., Rodríguez, A., Vassena, R., 2018. Is there a relation between the time to ICSI and the reproductive outcomes? Hum. Reprod. 33, 797-806. doi: 10.1093/humrep/dey067
    Quinn, J.L., Cresswell, W., 2006. Testing domains of danger in the selfish herd: sparrowhawks target widely spaced redshanks in flocks. P. Roy. Soc. Lond. B. Biol. 273, 2521-2526. doi: 10.1098/rspb.2006.3612
    Romey, W.L., Emily, G., 2008. Optimal group positioning after a predator attack: the influence of speed, sex, and satiation within mobile whirligig swarms. Behav. Ecol. 19, 338-343. doi: 10.1093/beheco/arm138
    Sansom, A., Cresswell, W., Minderman, J., Lind, J., 2008. Vigilance benefits and competition costs in groups: do individual redshanks gain an overall foraging benefit? Anim. Behav. 75, 1869-1875. doi: 10.1016/j.anbehav.2007.11.005
    Santos, R.G., Pinheiro, H.T., Martins, A.S., Riyl, P., Bruno, S.C., Janzen, F.J., et al., 2016. The anti-predator role of within-nest emergence synchrony in sea turtle hatchlings. P. Roy. Soc. Lond. B. Biol. 283, 20160697. doi: 10.1098/rspb.2016.0697
    Saout, S.L., Martin, J.L., Blanchard, P., Cebe, N., Mark Hewison, A.J., Rames, J.L., et al., 2015. Seeing a ghost? Vigilance and its drivers in a predator-free world. Ethology 121, 651-660. doi: 10.1111/eth.12377
    Shi, J., Li, D., Xiao, W., 2011. Influences of sex, group size, and spatial position on vigilance behavior of Przewalski's gazelles. Acta Theriol. 56, 73-79. doi: 10.1007/s13364-010-0001-1
    Stankowich, T., 2003. Marginal predation methodologies and the importance of predator preferences. Anim. Behav. 66, 589-599. doi: 10.1006/anbe.2003.2232
    Zhao, F., Zhou, L., Xu, W., 2013. Habitat utilization and resource partitioning of wintering Hooded Cranes and three goose species at Shengjin Lake. Chin. Birds 4, 281-290. doi: 10.5122/cbirds.2013.0032
    Zhao, J.M., Lyu, N., Cheng, W.D., Zhou, L.Z., 2020. Cryptic competition from neighbours significantly reduces intake rate of foraging greater white-fronted geese. Anim. Behav. 167, 119-126. doi: 10.1016/j.anbehav.2020.07.011
    Zhao, J.M., Lyu, N., Sun, Y.H., Zhou, L.Z., 2019. Number of neighbors instead of group size significantly affects individual vigilance levels in large animal aggregations. J. Avian Biol. 50, e02065. doi: 10.1111/jav.02065
    Zhao, M., Cao, L., Klaassen, M., Zhang, Y., Fox, A.D., 2015. Avoiding competition? Site use, diet and foraging behaviours in two similarly sized geese wintering in China. Ardea 103, 27-38.
    Zhao, Q., Wang, X., Cao, L., Fox, A.D., 2018. Why Chinese wintering geese hesitate to exploit farmland. Ibis 160, 703-705. doi: 10.1111/ibi.12605
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (74) PDF downloads(4) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint