Abebe, A.F., Cai, T., Wale, M., Song, G., Fjeldsa, J., Lei, F., 2019. Factors determining species richness patterns of breeding birds along an elevational gradient in the Horn of Africa region. Ecol. Evol. 917, 9609-9623. doi: 10.1002/ece3.5491 |
Baldi, A., 2008. Habitat heterogeneity overrides the species-area relationship. J. Biogeogr. 354, 675-681. doi: 10.1111/j.1365-2699.2007.01825.x |
Bazzaz, F., 1975. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 562, 485-488. doi: 10.2307/1934981 |
Begon, M., Townsend, C., Harper, J., 2006. Ecology, from Individuals to Ecosystems. fourth ed. Blackwell Publication, New York. |
Bhattarai, K.R., Vetaas, O.R., 2006. Can Rapoport's rule explain tree species richness along the Himalayan elevation gradient, Nepal? Divers. Distrib. 124, 373-378. doi: 10.1111/j.1366-9516.2006.00244.x |
Brehm, G., Colwell, R.K., Kluge, J., 2007. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 162, 205-219. doi: 10.1111/j.1466-8238.2006.00281.x |
Colwell, R.K., Brehm, G., Cardelus, C.L., Gilman, A.C., Longino, J.T., 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258-261. doi: 10.1126/science.1162547 |
Colwell, R.K., Hurtt, G.C., 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 1444, 570-595. |
Colwell, R.K., Lees, D.C., 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 152, 70-76. doi: 10.1016/S0169-5347(99)01767-X |
Colwell, R.K., Rahbek, C., Gotelli, N.J., 2004. The mid-domain effect and species richness patterns: what have we learned so far? Am. Nat. 1633, E1-E23. |
Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O'Brien, E., Turner, J.R.G., 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology letters 7(12), 1121–1134. doi: 10.1111/j.1461-0248.2004.00671.x |
Elsen, P.R., Tingley, M.W., Kalyanaraman, R., Ramesh, K., Wilcove, D.S., 2017. The role of competition, ecotones, and temperature in the elevational distribution of Himalayan birds. Ecology 982, 337-348. doi: 10.1002/ecy.1669 |
Evans, K.L., Warren, P.H., Gaston, K.J., 2005. Species-energy relationships at the macroecological scale: a review of the mechanisms. Biol. Rev. 801, 1-25. |
Fjeldsa, J., Bowie, R.C., Rahbek, C., 2012. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249-265. doi: 10.1146/annurev-ecolsys-102710-145113 |
Fraschetti, S., Bianchi, C.N., Terlizzi, A., Fanelli, G., Morri, C., Boero, F., 2001. Spatial variability and human disturbance in shallow subtidal hard substrate assemblages: a regional approach. Mar. Ecol. Prog. Ser. 212: 1-12. doi: 10.3354/meps212001 |
Frishkoff, L.O., Karp, D.S., M'Gonigle, L.K., Mendenhall, C.D., Zook, J., Kremen, C., et al., 2014. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343-1346. doi: 10.1126/science.1254610 |
Gill, F., Donsker, D., 2019. IOC world bird list (v9. 2). https://doi.org/10.14344/IOC.ML. |
Hawkins, B.A., Diniz-Filho, J.A.F., Soeller, S.A., 2005. Water links the historical and contemporary components of the Australian bird diversity gradient. J. Biogeogr. 326, 1035-1042. doi: 10.1111/j.1365-2699.2004.01238.x |
Hawkins, B.A., Porter, E.E., 2001. Area and the latitudinal diversity gradient for terrestrial birds. Ecology letters 4(6), 595–601. doi: 10.1046/j.1461-0248.2001.00271.x |
He, X., Wang, X., DuBay, S., Reeve, A.H., Alstrom, P., Ran, J., et al., 2019. Elevational patterns of bird species richness on the eastern slope of Mt. Gongga, Sichuan Province, China. Avian Res. 101, 1-12. doi: 10.1186/s40657-018-0140-7 |
Hunter, J., Malcolm, L., Yonzon, P., 1993. Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. Conserv. Biol. 72, 420-423. doi: 10.1046/j.1523-1739.1993.07020420.x |
Hurlbert, A.H., Haskell, J.P., 2003. The effect of energy and seasonality on avian species richness and community composition. Am. Nat. 1611, 83-97. |
Inostroza, L., Zasada, I., Konig, H.J., 2016. Last of the wild revisited: assessing spatial patterns of human impact on landscapes in Southern Patagonia, Chile. Region. Environ. Change 167, 2071-2085. doi: 10.1007/s10113-016-0935-1 |
Jetz, W., Rahbek, C., 2002. Geographic range size and determinants of avian species richness. Science 297, 1548-1551. doi: 10.1126/science.1072779 |
Karger, D.N., Conrad, O., Bohner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., et al., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 41, 1-20. doi: 10.1038/sdata.2017.122 |
Karl, J.W., Maurer, B.A., 2010. Spatial dependence of predictions from image segmentation: a variogram-based method to determine appropriate scales for producing land-management information. Ecol. Inform. 53, 194-202. doi: 10.1016/j.ecoinf.2010.02.004 |
Koblik, E.A., Arkhipov, V.Y., 2014. Avifauna of the States of Northern Eurasia (former USSR): checklists. Zool. Issledov. 14, 171. |
Koh, C.N., Lee, P.F., Lin, R.S., 2006. Bird species richness patterns of northern Taiwan: primary productivity, human population density, and habitat heterogeneity. Divers. Distrib. 125, 546-554. doi: 10.1111/j.1366-9516.2006.00238.x |
Kurbоnov, S., Saidov, M., 2013. The state of forest genetic resources in the sec region, the Republic of Tajikistan country report: Food and Agriculture Organization of the United Nations. http://www.fao.org/3/a-i3299b.pdf. |
Lee, P.F., Ding, T.S., Hsu, F.H., Geng, S., 2004. Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization. J. Biogeogr. 312, 307-314. doi: 10.1046/j.0305-0270.2003.00988.x |
Lees, D.C., Kremen, C., Andriamampianina, L., 1999. A null model for species richness gradients: bounded range overlap of butterflies and other rainforest endemics in Madagascar. Biol. J. Linn. Soc. 674, 529-584. doi: 10.1111/j.1095-8312.1999.tb01945.x |
Liu, Y., Su, X., Shrestha, N., Xu, X., Wang, S., Li, Y., et al., 2019. Effects of contemporary environment and Quaternary climate change on drylands plant diversity differ between growth forms. Ecography 422, 334-345. doi: 10.1111/ecog.03698 |
Luo, Z., Tang, S., Li, C., Fang, H., Hu, H., Yang, J., Ding, J., Jiang, Z., 2012. Environmental effects on vertebrate species richness: Testing the energy, environmental stability and habitat heterogeneity hypotheses. PLoS One 7(4), e35514. doi: 10.1371/journal.pone.0035514 |
MacArthur, R.H., MacArthur, J.W., 1961. On bird species diversity. Ecology 423, 594-598. doi: 10.2307/1932254 |
Mallet-Rodrigues, F., Parrini, R., Renno, B., 2015. Bird species richness and composition along three elevational gradients in southeastern Brazil. Atualidades Ornitologicas 188, 39-58. |
Marchese, C., 2015. Biodiversity hotspots: a shortcut for a more complicated concept. Glob. Ecol. Conserv. 3, 297-309. doi: 10.1016/j.gecco.2014.12.008 |
McCain, C.M., 2007. "Area and mammalian elevational diversity. ". Ecology 88.1, 76–86. doi: 10.1890/0012-9658(2007)88[76:AAMED]2.0.CO;2 |
McCain, C.M., 2009. Global analysis of bird elevational diversity. Glob. Ecol. Biogeogr. 183, 346-360. doi: 10.1111/j.1466-8238.2008.00443.x |
McCain, C.M., Grytnes, J.A., 2010. Elevational gradients in species richness. eLS. https://doi.org/10.1002/9780470015902.a0022548. |
Mittermeier, R.A., Gil, P., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C., et al., 2004. Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions Cemex. CEMEX, Mexico City. |
Munoz-Pedreros, A., Gonzalez-Urrutia, M., Encina-Montoya, F., Norambuena, H.V., 2018. Effects of vegetation strata and human disturbance on bird diversity in green areas in a city in southern Chile. Avian Res. 91, 1-15. doi: 10.1186/s40657-018-0130-9 |
Murphy, G.E., Romanuk, T.N., 2014. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 41, 91-103. doi: 10.1002/ece3.909 |
Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. doi: 10.1038/35002501 |
Nobis, M., Nowak, A., 2011. New data on the vascular flora of the central Pamir Alai Mountains (Tajikistan, Central Asia). Polish Bot. J. 562, 195-201. |
Nogues-Bravo, D., Araujo, M., Romdal, T., Rahbek, C., 2008. Scale effects and human impact on the elevational species richness gradients. Nature 4537192, 216-219. doi: 10.1038/nature06812 |
Nowak, A., Nowak, S., Nobis, M.N.A., Nobis, A., 2015. Distribution patterns of segetal weeds of cereal crops in Tajikistan. Pak. J. Bot. 474, 1415-1422. |
O'Brien, E., 1998. Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. J. Biogeogr. 252, 379-398. doi: 10.1046/j.1365-2699.1998.252166.x |
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V., Underwood, E.C., et al., 2001. Terrestrial ecoregions of the world: a new map of life on earth. A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 5111, 933-938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 |
Pan, X., Ding, Z., Hu, Y., Liang, J., Wu, Y., Si, X., et al., 2016. Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China. PeerJ 4, e2636. doi: 10.7717/peerj.2636 |
Pan, X., Liang, D., Zeng, W., Hu, Y., Liang, J., Wang, X., et al., 2019. Climate, human disturbance and geometric constraints drive the elevational richness pattern of birds in a biodiversity hotspot in southwest China. Glob. Ecol. Conserv. 18, e00630. doi: 10.1016/j.gecco.2019.e00630 |
Pandey, N., Khanal, L., Chalise, M.K., 2020. Correlates of avifaunal diversity along the elevational gradient of Mardi Himal in Annapurna Conservation Area, Central Nepal. Avian Res. 111, 1-14. doi: 10.1186/s40657-020-00217-6 |
Paudel, P.K., Sipos, J., 2014. Conservation status affects elevational gradient in bird diversity in the Himalaya: a new perspective. Glob. Ecol. Conserv. 2, 338-348. doi: 10.1016/j.gecco.2014.10.012 |
Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., et al., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752. doi: 10.1126/science.1246752 |
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2007. Linear and nonlinear mixed effects models. R package version 357, 1-89. |
Price, T.D., Hooper, D.M., Buchanan, C.D., Johansson, U.S., Tietze, D.T., Alstrom, P., et al., 2014. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222-225. doi: 10.1038/nature13272 |
Quintero, I., Jetz, W., 2018. Global elevational diversity and diversification of birds. Nature 555, 246-250. doi: 10.1038/nature25794 |
R Development Core Team. 2018. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. |
Rahbek, C., 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18, 200-205. doi: 10.1111/j.1600-0587.1995.tb00341.x |
Rahbek, C., 2005. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 82, 224-239. |
Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., et al., 2019a. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114-1119. doi: 10.1126/science.aax0151 |
Rahbek, C., Borregaard, M.K., Colwell, R.K., Dalsgaard, B., Holt, B.G., Morueta-Holme, N., et al., 2019b. Humboldt's enigma: what causes global patterns of mountain biodiversity? Science 365, 1108-1113. doi: 10.1126/science.aax0149 |
Robinson, N., Regetz, J., Guralnick, R.P., 2014. EarthEnv-DEM90: a nearly-global, void-free, multi-scale smoothed, 90 m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. 87, 57-67. doi: 10.1016/j.isprsjprs.2013.11.002 |
Rodriguez-Rodriguez, D., Bomhard, B., 2012. Mapping direct human influence on the world's mountain areas. Mt. Res. Dev. 322, 197-202. doi: 10.1659/MRD-JOURNAL-D-10-00111.1 |
Rosenzweig, M.L., 1995. Species diversity in space and time. Cambridge University Press, Cambridge. |
Ruggiero, A., Hawkins, B.A., 2008. Why do mountains support so many species of birds? Ecography 313, 306-315. doi: 10.1111/j.0906-7590.2008.05333.x |
Safarov, N., 2003. National strategy and action plan on conservation and sustainable use of biodiversity. https://www.cbd.int/doc/world/tj/tj-nbsap-01-p02-en.pdf. |
Sam, K., Koane, B., Bardos, D.C., Jeppy, S., Novotny, V., 2019. Species richness of birds along a complete rain forest elevational gradient in the tropics: habitat complexity and food resources matter. J. Biogeogr. 462, 279-290. doi: 10.1111/jbi.13482 |
Sekercioglu, C.H., 2012. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 1531, 153-161. doi: 10.1007/s10336-012-0869-4 |
Sergio, F., Pedrini, P., 2007. Biodiversity gradients in the Alps: the overriding importance of elevation. Biodivers. Conserv. 16, 3243-3254. doi: 10.1007/s10531-006-9113-y |
Stevens, G.C., 1992. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. Am. Nat. 1406, 893-911. doi: 10.1086/285447 |
Thakur, M., 2013. Bird species composition along the altitudinal gradient in Himachal Pradesh (Western Himalaya), India. Int. J. Adv. Biol. Res. 34, 556-562. |
Tjoerve, E., Tjoerve, K.M., 2017. Species-area relationship. eLS. 1-9. |
Treshkin, S., Kamalov, S., Bachiev, A., Mamutov, N., Gladishev, A., Aimbetov, I., 1998. Present status of the tugai forests in the lower Amudarya basin and problems of their protection and restoration. Ecol. Res. Monit. Aral Sea Deltas 43-54. |
Turner, M.G., Gardner, R.H., O'neill, R.V., O'Neill, R.V., 2001. Landscape Ecology in Theory and Practice. Springer, New York. |
Vetaas, O.R., Grytnes, J.A., 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 114, 291-301. doi: 10.1046/j.1466-822X.2002.00297.x |
White, R.L., Bennett, P.M., 2015. Elevational distribution and extinction risk in birds. PLoS ONE 104, e0121849. doi: 10.1371/journal.pone.0121849 |
Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis (use R!). Springer, New York. |
Wilson, E.O., MacArthur, R.H., 1967. The Theory of Island Biogeography. Princeton University Press, Princeton. |
Wu, Y., Colwell, R.K., Han, N., Zhang, R., Wang, W., Quan, Q., et al., 2014. Understanding historical and current patterns of species richness of babblers along a 5000-m subtropical elevational gradient. Glob. Ecol. Biogeogr. 2311, 1167-1176. doi: 10.1111/geb.12197 |
Wu, Y., Colwell, R.K., Rahbek, C., Zhang, C., Quan, Q., Wang, C., et al., 2013a. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 4012, 2310-2323. doi: 10.1111/jbi.12177 |
Wu, Y., Yang, Q., Wen, Z., Xia, L., Zhang, Q., Zhou, H., 2013b. What drives the species richness patterns of non-volant small mammals along a subtropical elevational gradient? Ecography 362, 185-196. doi: 10.1111/j.1600-0587.2011.07132.x |
Zhang, J., Kissling, W.D., He, F., 2013. Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada. J. Biogeogr. 406, 1131-1142. doi: 10.1111/jbi.12063 |