Volume 13 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
Xue Wang, Guang Zhu, Haohao Ma, Yi Wu, Wenwen Zhang, Yong Zhang, Chunlin Li, Willem F. de Boer. 2022: Bird communities’ responses to human-modified landscapes in the southern Anhui Mountainous Area. Avian Research, 13(1): 100006. doi: 10.1016/j.avrs.2022.100006
Citation: Xue Wang, Guang Zhu, Haohao Ma, Yi Wu, Wenwen Zhang, Yong Zhang, Chunlin Li, Willem F. de Boer. 2022: Bird communities’ responses to human-modified landscapes in the southern Anhui Mountainous Area. Avian Research, 13(1): 100006. doi: 10.1016/j.avrs.2022.100006

Bird communities’ responses to human-modified landscapes in the southern Anhui Mountainous Area

doi: 10.1016/j.avrs.2022.100006
More Information
  • Corresponding author: E-mail address: lichunlin1985@163.com (C. Li)
  • Received Date: 26 Jun 2021
  • Accepted Date: 28 Nov 2021
  • Publish Date: 03 Feb 2022
  • Conversion of natural environments to human-modified landscapes is continuing at an unprecedented rate, exerting fundamental influences on global biodiversity. Understanding how wildlife communities respond to landscape modifications is critical to improve biodiversity conservation in human-dominated landscapes. In this study, we surveyed bird communities in three common habitats (i.e., farmland, village, and forest) in the southern Anhui Mountainous Area during summer (August 2019) and winter (December 2020). The diversity metrics and species compositions of the avian communities were compared among the habitats, and the effects of land use composition in these habitats were tested. During the field surveys, we recorded 7599 birds of 120 species along 45 line transects of 1 ​km in length. The land use compositions differed among habitats, and land use diversity was the highest in villages and lowest in forests. The species richness and bird abundance in the two human-dominated habitats (i.e., farmland and village) were higher than those in forest in both seasons. Bird species composition also differed across habitat types in both seasons. Bird species feeding on vertebrates, fish and carrion, and species feeding on plants and seeds were mainly found in habitats with less construction lands and lower land use diversity, while omnivorous species and species feeding on fruits and nectar or on invertebrates were less affected by these two variables. The indicator species analysis showed that most species associated with forest feed on invertebrates, while species feeding on plants and seeds were more correlated with farmland and village. The results indicated that the conversion of natural habitats to human-dominated landscapes has pronounced impacts on bird communities in the study area. Human-dominated habitats harboured more avian species that deserve conservation attention. Meanwhile, bird conservations should not be relaxed in forests because there were more than 20 species that had a high specificity for forests.

     

  • loading
  • Aguirre-Gutierrez J, Malhi Y, Lewis SL, Fauset S, Adu-Bredu S, Affum-Baffoe K, et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat Commun. 2020;11:3346 doi: 10.1038/s41467-020-16973-4
    Allen DC, Bateman HL, Warren PS, Albuquerque FS, Arnett-Romero S, Harding B. Long-term effects of land-use change on bird communities depend on spatial scale and land-use type. Ecosphere. 2019;10:e02952
    Aronson MFJ, Nilon CH, Lepczyk CA, Parker TS, Warren PS, Cilliers SS, et al. Hierarchical filters determine community assembly of urban species pools. Ecology. 2016;97:2952-2963 doi: 10.1002/ecy.1535
    Asefa A, Davies AB, McKechnie AE, Kinahan AA, van Rensburg BJ. Effects of anthropogenic disturbance on bird diversity in Ethiopian montane forests. Condor. 2017;119:416-430 doi: 10.1650/CONDOR-16-81.1
    Bain GC, MacDonald MA, Hamer R, Gardiner R, Johnson CN, Jones ME. Changing bird communities of an agricultural landscape: declines in arboreal foragers, increases in large species. R Soc Open Sci. 2020;7:200076 doi: 10.1098/rsos.200076
    Basnet TB, Rokaya MB, Bhattarai BP, Munzbergova Z. Heterogeneous landscapes on steep slopes at low altitudes as hotspots of bird diversity in a hilly region of Nepal in the central Himalayas. PLoS One. 2016;11:e0150498 doi: 10.1371/journal.pone.0150498
    Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol. 2003;18:182-188 doi: 10.1016/S0169-5347(03)00011-9
    Bibby, C., Burgess, N., Hill, D., Mustoe, S., 2002. Bird Census Techniques, second ed. Academic Press, London.
    Bonier F, Martin PR, Wingfield JC. Urban birds have broader environmental tolerance. Biol Lett. 2007;3:670-673 doi: 10.1098/rsbl.2007.0349
    de Caceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566-3574 doi: 10.1890/08-1823.1
    Catterall CP, Cousin JA, Piper S, Johnson G. Long-term dynamics of bird diversity in forest and suburb: decay, turnover or homogenization? Divers Distrib. 2010;16:559-570 doi: 10.1111/j.1472-4642.2010.00665.x
    Chapman KA, Reich PB. Land use and habitat gradients determine bird community diversity and abundance in suburban, rural and reserve landscapes of Minnesota, USA. Biol Conserv. 2007;135:527-541 doi: 10.1016/j.biocon.2006.10.050
    Coetzee BWT, Chown SL. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol Evol. 2016;6:7610-7622 doi: 10.1002/ece3.2389
    Connell JH. Diversity in tropical rain forests and coral reefs. Science. 1978;199:1302-1310 doi: 10.1126/science.199.4335.1302
    Cushman SA. Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv. 2006;128:231-240 doi: 10.1016/j.biocon.2005.09.031
    DeClerck FAJ, Chazdon R, Holl KD, Milder JC, Finegan B, Martinez-Salinas A, et al. Biodiversity conservation in human-modified landscapes of Mesoamerica: past, present and future. Biol Conserv. 2010;143:2301-2313 doi: 10.1016/j.biocon.2010.03.026
    Desrochers RE, Kerr JT, Currie DJ. How, and how much, natural cover loss increases species richness. Glob Ecol Biogeogr. 2011;20:857-867 doi: 10.1111/j.1466-8238.2011.00658.x
    Ding Z, Liang J, Hu Y, Zhou Z, Sun H, Liu L, et al. Different responses of avian feeding guilds to spatial and environmental factors across an elevation gradient in the central Himalaya. Ecol Evol. 2019;9:4116-4128 doi: 10.1002/ece3.5040
    Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. Defaunation in the Anthropocene. Science. 2014;345:401-406 doi: 10.1126/science.1251817
    Ferger SW, Schleuning M, Hemp A, Howell KM, Bohning-Gaese K. Food resources and vegetation structure mediate climatic effects on species richness of birds. Glob Ecol Biogeogr. 2014;23:541-549 doi: 10.1111/geb.12151
    Fox JW. The intermediate disturbance hypothesis should be abandoned. Trends Ecol Evol. 2013;28:86-92 doi: 10.1016/j.tree.2012.08.014
    Garcia D, Minarro M, Martinez-Sastre R. Birds as suppliers of pest control in cider apple orchards: avian biodiversity drivers and insectivory effect. Agr Ecosyst Environ. 2018;254:233-243 doi: 10.1016/j.agee.2017.11.034
    Gaston KJ, Blackburn TM, Klein Goldewijk K. Habitat conversion and global avian biodiversity loss. Proc Biol Sci. 2003;270:1293-1300 doi: 10.1098/rspb.2002.2303
    Jacobson AP, Riggio J, Tait AM, Baillie JEM. Global areas of low human impact ('Low Impact Areas') and fragmentation of the natural world. Sci Rep. 2019;9:14179 doi: 10.1038/s41598-019-50558-6
    Jarrett C, Smith TB, Claire TTR, Ferreira DF, Tchoumbou M, Elikwo MNF, et al. Bird communities in African cocoa agroforestry are diverse but lack specialized insectivores. J Appl Ecol. 2021;58:1237-1247 doi: 10.1111/1365-2664.13864
    Jin X, Wu H. Wild animal resources and its management in the south of Anhui Province. J Huaibei Norm Univ. 2002;23:51-54 (In Chinese)
    Kissling WD, Field R, Bohning-Gaese K. Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? Glob Ecol Biogeogr. 2008;17:327-339 doi: 10.1111/j.1466-8238.2007.00379.x
    Li, J., 2016. Prioritized Areas for Land Area Biodiversity Conservation in china. Science Press, Beijing (In Chinese).
    Li S. A study of modern rural development modes and mechanism in Anhui mountainous areas. J Chizhou College. 2011;25:1-5 (In Chinese)
    Liang C, Yang G, Wang N, Feng G, Yang F, Svenning J-C, et al. Taxonomic, phylogenetic and functional homogenization of bird communities due to land use change. Biol Conserv. 2019;236:37-43 doi: 10.1016/j.biocon.2019.05.036
    Liu X, Liu X, Wu L, Tian Z. Diversity in phytoplankton communities: a field test of the intermediate disturbance hypothesis. Ecol Eng. 2019;129:54-60 doi: 10.1117/12.2503856
    MacArthur RH, MacArthur JW. On bird species diversity. Ecology. 1961;42:594-598 doi: 10.2307/1932254
    MacKinnon, J.R., Phillipps, K., He, F., 2000. A Field Guide to the Birds of China. Oxford University Press, New York.
    Martin TE, Nightingale J, Baddams J, Monkhouse J, Kaban A, Sastranegara H, et al. Variability in the effectiveness of two ornithological survey methods between tropical forest ecosystems. PLoS One. 2017;12:e0169786 doi: 10.1371/journal.pone.0169786
    Maseko MST, Zungu MM, Ehlers Smith DA, Ehlers Smith YC, Downs CT. Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. Urban Ecosyst. 2020;23:533-542 doi: 10.1007/s11252-020-00945-z
    Matuoka MA, Benchimol M, de Almeida-Rocha JM, Morante-Filho JC. Effects of anthropogenic disturbances on bird functional diversity: a global meta-analysis. Ecol Indic. 2020;116:106471 doi: 10.1016/j.ecolind.2020.106471
    Mayor SJ, Cahill JF, He F, Solymos P, Boutin S. Regional boreal biodiversity peaks at intermediate human disturbance. Nat Commun. 2012;3:1142 doi: 10.1038/ncomms2145
    McCune, B., Grace, J.B., Urban, D.L., 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach.
    Michel NL, Whelan CJ, Verutes GM. Ecosystem services provided by Neotropical birds. Condor. 2020;122:1-21 doi: 10.2307/arion.28.1.0001
    Minchin, P.R., 1987. An evaluation of the relative robustness of techniques for ecological ordination. In: Prentice, I.C., van der Maarel, E. (Eds.), Theory and Models in Vegetation Science. Springer Netherlands, Dordrecht, pp. 89–107.
    Molino JF, Sabatier D. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science. 2001;294:1702-1704 doi: 10.1126/science.1060284
    Morrison, M.L., 1986. Bird populations as indicators of environmental change. In: Johnston, R.F. (Ed.), Current Ornithology. Springer US, Boston, MA, pp. 429–451.
    Oro D, Genovart M, Tavecchia G, Fowler MS, Martinez-Abrain A. Ecological and evolutionary implications of food subsidies from humans. Ecol Lett. 2013;16:1501-1514 doi: 10.1111/ele.12187
    Piano E, Souffreau C, Merckx T, Baardsen LF, Backeljau T, Bonte D, et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob Chang Biol. 2020;26:1196-1211 doi: 10.1111/gcb.14934
    Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131-144 doi: 10.1016/0022-5193(66)90013-0
    Pothasin P, Compton SG, Wangpakapattanawong P. Seasonality of leaf and fig production in Ficus squamosa, a fig tree with seeds dispersed by water. PLoS One. 2016;11:e0152380 doi: 10.1371/journal.pone.0152380
    Pringle S, Chiweshe N, Steward PR, Mundy PJ, Dallimer M. Rapid redistribution of agricultural land alters avian richness, abundance, and functional diversity. Ecol Evol. 2019;9:12259-12271 doi: 10.1002/ece3.5713
    R Core Team, 2020. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. (Accessed 11 May 2020).
    Rime Y, Luisier C, Arlettaz R, Jacot A. Landscape heterogeneity and management practices drive habitat preferences of wintering and breeding birds in intensively-managed fruit-tree plantations. Agr Ecosyst Environ. 2020;295:106890 doi: 10.1016/j.agee.2020.106890
    Sekercioglu CH, Ehrlich PR, Daily GC, Aygen D, Goehring D, Sandi RF. Disappearance of insectivorous birds from tropical forest fragments. Proc Natl Acad Sci U S A. 2002;99:263-267 doi: 10.1073/pnas.012616199
    Sekercioglu CH. Increasing awareness of avian ecological function. Trends Ecol Evol. 2006;21:464-471 doi: 10.1016/j.tree.2006.05.007
    Sekercioglu CH, Daily GC, Ehrlich PR. Ecosystem consequences of bird declines. Proc Natl Acad Sci U S A. 2004;101:18042-18047 doi: 10.1073/pnas.0408049101
    sekercioglu CH, Mendenhall CD, Oviedo-Brenes F, Horns JJ, Ehrlich PR, Daily GC. Long-term declines in bird populations in tropical agricultural countryside. Proc Natl Acad Sci U S A. 2019;116:9903-9912 doi: 10.1073/pnas.1802732116
    Shannon, C.E., Weaver, W., 1998. The Mathematical Theory of Communication. University of Illinois Press, Urbana.
    Sheil D, Burslem DFRP. Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends Ecol Evol. 2013;28:571-572 doi: 10.1016/j.tree.2013.07.006
    Stratford JA, Stouffer PC. Forest fragmentation alters microhabitat availability for Neotropical terrestrial insectivorous birds. Biol Conserv. 2015;188:109-115 doi: 10.1016/j.biocon.2015.01.017
    Svensson JR, Lindegarth M, Siccha M, Lenz M, Molis M, Wahl M, et al. Maximum species richness at intermediate frequencies of disturbance: consistency among levels of productivity. Ecology. 2007;88:830-838 doi: 10.1890/06-0976
    Swart RC, Pryke JS, Roets F. The intermediate disturbance hypothesis explains arthropod beta-diversity responses to roads that cut through natural forests. Biol Conserv. 2019;236:243-251 doi: 10.1016/j.biocon.2019.03.045
    Wang H, Hu J, Mei H. Present situation and promotion strategy of agricultural mechanization in hilly areas of Anhui Province. Modern Agricultural Science and Technology. 2021;159-162. (In Chinese) doi: 10.3847/1538-4357/ac2152
    Wang H, Wang F. Research on the difference of village community in Anhui. J Anhui Agr Sci. 2015;43:280-282 (In Chinese)
    Watson JEM, Whittaker RJ, Freudenberger D. Bird community responses to habitat fragmentation: how consistent are they across landscapes? J Biogeogr. 2005;32:1353-1370 doi: 10.1111/j.1365-2699.2005.01256.x
    Whelan CJ, Sekercioglu CH, Wenny DG. Why birds matter: from economic ornithology to ecosystem services. J Ornithol. 2015;156:227-238 doi: 10.1007/s10336-015-1229-y
    Wilman H, Belmaker J, Simpson J, de La Rosa C, Rivadeneira MM, Jetz W. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95:2027 doi: 10.1890/13-1917.1
    Wu, H., Gu, C., 2017. A Guide to the Birds of Anhui. Anhui Normal University Press, Anhui (In Chinese).
    Yabuhara Y, Yamaura Y, Akasaka T, Yamanaka S, Nakamura F. Seasonal variation in patch and landscape effects on forest bird communities in a lowland fragmented landscape. For Ecol Manage. 2019;454:117140 doi: 10.1016/j.foreco.2019.01.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (264) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return